
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

OPDB: A Scalable and Modular Design Benchmark
Georgios Tziantzioulis, Ting-Jung Chang, Jonathan Balkind, Jinzheng Tu, Fei Gao, David Wentzlaff

Abstract—Progress in Electronic Design Automation (EDA) has
enabled us to manage the exponential growth of complexity in
integrated circuits (IC) allowed by Moore’s Law, and translate
it into performance improvements. Furthermore, as Moore’s law
slows down and with the collapse of Dennard scaling over the past
decade, EDA tools become increasingly important in addressing
inefficiencies in ICs. As new proposals and techniques are put
forward to address the current and future issues of IC design,
a concrete set of contemporary benchmarks need to be used
for their evaluation. Traditionally, EDA researchers have mainly
relied on industry provided design benchmarks in evaluating
the performance of their tools. However, due to their effort to
maintain their competitive advantage, industry releases include
older designs with limited information about the details of each
design. This means that in multiple cases new proposals are
evaluated with significantly dated designs, often more than a
decade old, especially in terms of scale.

In this work, we describe OPDB: a scalable, modular, heteroge-
neous, and extensible design benchmark for the EDA community.
OPDB leverages and extends the OpenPiton open-source, tile-
based research infrastructure to create a surplus of design
benchmarks that target different components. Due to the tiled
nature of this architecture, OPDB benchmarks can be made
arbitrarily large in order to evaluate the efficiency of EDA tools
across different design scales and configurations. OPDB contains
several accelerators enabling full SoC designs to be used as
benchmarks for EDA tools.

Index Terms—Electronic Design Automation (EDA), Design
Benchmark, Scalable, Modular.

I. INTRODUCTION

Over the past 50+ years, the field of Electronic Design Au-
tomation (EDA) has played a key role in the growth we have
experienced in computational capabilities [1]. Innovations and
research in EDA tools and techniques have enabled designers
to manage the exponential increase in complexity of Integrated
Circuits (ICs), from the first microprocessor which contained
a few thousand transistors, to the latest ICs that can number
up to trillions of transistors [1], [2], [3].

Despite the slowdown of Moore’s law and the collapse of
Dennard scaling, transistor counts in ICs have continued to
increase. The increased complexity with each generation keeps
pushing the limits of tools and algorithms. The combination of
these issues means that EDA tools will become increasingly
important in addressing inefficiencies in ICs.

As new algorithms and techniques are introduced to improve
existing EDA tools, benchmarks play a crucial role in quanti-
tatively evaluating the proposed techniques. Commercial EDA
tools are able to assess their effectiveness and stay relevant
through their use in the design of new IC products. In contrast,
academic tools have had to rely on industrial partners to
provide industry-strength and scale designs. Due to the desire

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11

CPUs+GPUs ITRS (Cost-Performance)
ITRS (High-Performance) Real Design-based Benchmarks
Synthetic-based Benchmarks

N
um

be
r

of
 c

el
ls

/g
at

es

O
P

D
B

 s
c

al
e

Fig. 1: Timeline of the number of cells/gates for commercial
CPUs/GPUs, ITRS projections, and EDA benchmarks from
real and synthetic designs. For CPUs/GPUs and ITRS projec-
tion the number of cells/gates was computed assuming that
each cell/gate was composed of 6 transistors.

of commercial companies to maintain a competitive advantage
against competitors, industrial designs are not released in a
timely manner to the public and academia, and though a
number of research teams may be able to form collaborations
with industry and gain access to newer designs, the results are
not usable by others as the reported data cannot be reproduced
by other teams [4].

As a result, most new academic proposals are evaluated
with designs that are significantly dated, especially in terms
of scale. This problem has been exacerbated over the years
as commercial designs kept scaling, while EDA benchmarks
and test cases have struggled to scale commensurately. Fig. 1
presents historical data, between 1985 and 2019, regarding the
number of cells/gates for commercial CPUs and GPUs [2],
[5], [6], [7], the projected number of cells/gates for Multi-
Processor Units based on ITRS 2001-2011 [8], together with
the number of gates/cells in different EDA benchmarks (de-
tailed in Table I).

As can be seen in Fig. 1, the difference between the number
of cells/gates in commercial products and EDA benchmarks
has been on the scale of multiple orders of magnitude. Fur-
thermore, we can observe that the difference between the size
of benchmarks and that of real designs has been increasing
since 2005.

To address some of the existing problems of current EDA
benchmarks, we created OPDB. OPDB is a scalable, modular,
heterogeneous, and extensible collection of design benchmarks
based on industrial strength, FPGA- and ASIC-tested designs
from OpenPiton [9] and other open-source projects, such as,
accelerators from OpenCores [10], [11], [12] and the MIAOW
GPGPU [13].0278-0070 ©2021 IEEE. https://doi.org/10.1109/TCAD.2021.3096794

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

TABLE I: Circuit Benchmark Characteristics

Benchmark Ty
pe

M
ax

G
at

e/
C

el
ls

or (N
)o

de
s

Sc
al

ab
le

M
od

ul
ar

Sy
nt

he
si

s

Pl
ac

em
en

t

R
ou

tin
g

74X-series [16] R 61 3 3 3
ISCAS’85 [17] R 1,512 3 3 3
ISCAS’89 [18] R 22,179 3 3 3
LGSynth’89 [19] R 4,000 3
LGSynth’91 [20] R 35,000 3
IWLS’93 [21] R 35,000 (est.) 3
ISPD’98 [22], [23], [24] R 210,341 3
ITC’99 [25] R 98,726 Q 3 3 3 3
Inacio et al. [26] R 14,550 3 3 3 3
PEKO/PEKU [27] S* 210,341 3 3
IWLS’05 [28] R 899,632 Q 3 3 3 3
ISPD’05 [29] R 2,177,353 3 3
LEKO/LEKU [30] S* 1,166,655 (N) 3
ISPD’06 [29] R 2,507,954 3 3
ISPD’07 [29] R 494,011 3
ISPD’08 [29] R 2,507,954 3
ISPD’11 [31] R 1,293,433 3 3
DAC’12 [32] R 1,364,958 3 3
ICCAD’12 [33] R 1,364,958 3 3
ISPD’12 [34] R 958,780 3 3
ICCAD’13 [33] R 1,364,958 3 3
ISPD’13 [35] R 982,258 3 3
ICCAD’14 [33] R 958,792 3 3
ISPD’14 [36] R 1,286,948 3 3

EPFL’15 [37] R 214,335 3 3 3
S 23,339,737 3 3 3

Matos et al. [38] R 200,762 3 3 3
ICCAD’15 [33] R 1,931,639 3 3
ISPD’15 [39] R 1,286,948 3 3
ICCAD’17 [33] R 130,661 3 3
ISPD’18 [40] R 290,386 3 3
ISPD’19 [41] R 899,404 3 3

OPDB R arbitrary 3 3 3 3 3

Though it is hard to predict the composition of future
designs, tying a benchmark suite to an extensible, modular,
and actively developed research infrastructure can provide
– in a timely manner – test cases with contemporary size,
modules, and designs. Moreover, the benefits can extend across
disciplines to enable collaborative research across fields.
Specifically, it can further push the envelop for across-the-
stack optimizations down to the EDA tool level. Furthermore,
Machine Learning enabled EDA tools and techniques [14] will
benefit from OPDB’s surplus of provided configurations and
published data relating to design-point instances (tapein/tape-
out), potentially making OPDB the ImageNet [15] of EDA.
Our work makes the following contributions:

• Creation and characterization of a scalable, modular, het-
erogeneous, and extensible benchmark based on FPGA-
and ASIC-tested real designs written in Standard Verilog.

• Release of the OPDB benchmark, which includes hun-
dreds of designs ranging from tens to billions of transis-
tors, to enable more EDA research opportunities.

• Development of Tursi, a tool for further scaling, config-
uration, and extension of the OPDB benchmark suite.

II. RELATED WORK

In this section we discuss previously published related work
and released benchmarks. Overall, benchmarks can be broadly
grouped into two categories [42]: the first includes benchmarks
based on real designs, either from industry or academia,
while the second includes artificial (i.e., randomly generated

or synthetic) designs generated through some algorithmic
process. The synthetic category can be further split into two
subcategories, those of synthetic designs and synthetic designs
with known optimal/upper bounds (also referred as exact
benchmark circuits). Table I provides a high-level overview
of previous EDA benchmark suites. Table I is composed of
six columns. The first column, Benchmark, provides the
name of the benchmark, that be a name provided by the
authors or the conference it was published, and one or more
references that include further information for the specific
benchmark. The Type column specifies if the benchmark is
based on real designs (R), synthetic (S), or synthetic with
known optimal/upper-bounds (S*). Additionally, the number
of cells or gates for the largest design in the benchmark is
included. Columns Scalable and Modular respectively
indicate if the designs can be scaled arbitrarily, and if sub-
modules can be targeted from the provided designs. Finally,
columns Synthesis, Placement, and Routing mark
which levels of benchmarking can be achieved with each
benchmark suite. The ITC’99 and IWLS’05 benchmarks are
marked with a Q symbol to indicate that they are limited in
their scalability. For ITC’99 a single design can be scaled
through replication. In IWLS’05 the leonmp design can be
scaled through changing the core number parameter in the
VHDL file. In both cases, enabling scalability is not a goal.

The majority of existing benchmarks are based on real
designs, with circuits mostly provided by the industry. More
recently, with the adoption of open source practices in hard-
ware development, public open-source and academic designs
have been included.

The MCNC and LGSynth benchmarks [17], [18], [19], [20],
[21], together with the 74X-series circuits [16], were early
benchmark suites which found wide use in academia [22]. In
1998, the year Intel released the Intel Celeron processor with
7.5M transistors [2], the largest public benchmark numbered
100K standard cells, while the second largest was just over
25K cells [43], [22]. To address this gap the ISPD’98 and
ITC’99 benchmarks were constructed, providing a more grad-
ual increase in complexity between each test case [22], [23],
[24], [25].

Due to the rapid pace of the IC industry, industrial bench-
marks were quickly becoming obsolete in terms of complexity,
and artificial benchmarks were introduced to address this
issue [44], [37], [45], [46], [47], [30], [27]. Apart from
addressing issues of scale, synthetic benchmarks have been
proposed as a way to assess how close to an optimal solutions
can contemporary EDA tools and algorithms get [30], [48],
[49]. Specifically, while traditionally new proposals are eval-
uated based on how they perform in relative terms compared
to previous work, synthetic benchmarks with known optimal
solutions (also known as exact benchmarks) can be constructed
thus providing the opportunity to evaluate how a technique per-
forms in terms of achieving a known optimal point. Despite the
flexibility that artificial benchmarks provide, such approaches
have also received criticism on their modelling precision [50],
[22].

Over the last two decades, multiple benchmark suite iter-
ations have been released, most in the context of workshop

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

or conference contests, such as the ISPD and ICCAD con-
tests [29], [33], with the designs predominantly coming from
industry. An important release for the open-source hardware
community was the IWLS’05 benchmark [28], where multiple
designs from OpenCores [12] were included.

OPDB attempts to combine the best attributes of previ-
ous benchmarks. In one hand, it includes open-source based
designs and frameworks that enable free modification, dis-
tribution, and collaboration. At the same time it does not
compromise on the quality of the chosen designs which are
of industrial strength, contemporary scale, and are FPGA- and
ASIC- tested.

Benchmarking of EDA tools and libraries can occur in
two axes. Inacio et al. [26] describe the concept of Vertical
Benchmarking, which requires that designs are provided in
multiple formats and stages of the flow (behavioral, structural,
and gate for behavioral synthesis, logic synthesis, and physical
design, respectively). OPDB attempts to satisfy the require-
ments of Vertical Benchmarking by providing files in Verilog
and BLIF formats. Moreover, it includes example scripts for
converting Verilog to BLIF and AIGER formats using open-
source EDA tools. On the alternate axis, Kahng et al. [42]
proposed Horizontal Benchmarking, which attempts to provide
an accurate comparison across tools at a given stage. In OPDB,
to ease comparison between different tools at a given stage we
choose to follow standard formats that are accepted both by
commercial and open-source tools.

Finally, though some past benchmarks include modules
which can be scaled in size (such as an ALU with a sliced
design, a replicated module, or a multicore processor), such
test cases are not representative of contemporary designs.
Many of today’s industrial designs resemble the tiled design of
OpenPiton, instances of which are included in the OPDB de-
sign benchmark. OPDB thus emphasizes scalability in a way
that directly reflects designs that are under active industrial
development.

III. OPDB: A SCALABLE AND MODULAR DESIGN
BENCHMARK

To address the scalability gap between contemporary de-
signs and EDA benchmarks, we introduce OPDB: a scalable
and modular design benchmark suite. Our goal is to provide
a design benchmark suite that: covers a wide range of scales,
enables modularity (so that specific design blocks can be
targeted), allows for heterogeneity, and provides the ability
to easily extend the existing set of benchmarks.

OPDB is composed of two parts: the first, and more visible,
is a large collection of design benchmarks with varying size
and functions based on modules and designs extracted or
generated from the OpenPiton framework and other open-
source hardware projects [9], [13], [10], [11]. Each of those
design benchmarks is contained inside a “pickled” file; i.e., a
single file which encloses post-processed all dependencies and
modules for the specific design instance. The second part is
Tursi: a tool for further scaling, configuration, and extension
of the benchmark suite. Tursi was the tool used to generate
the “pickled” (standalone, pre-processed, single-file) versions

of the benchmark modules and designs that compose the first
part.

A. Hardware Components

OPDB includes IP from a number of open-source hardware
frameworks and projects: OpenPiton [9], MIAOW [13], and
OpenCores [12].

OpenPiton is the first open-source, general-purpose, multi-
threaded, manycore processor, developed by Balkind et al. [9].
Its main codebase is written in industry standard Verilog
HDL (some newer inclusions such as the Ariane core [51]
are written in SystemVerilog), and its design enables easy
scalability, module configuration, extension, and modularity.

A compelling feature of the OpenPiton ecosystem is that
apart from a codebase and build infrastructure, its designs have
been validated through both FPGA and ASIC implementation,
and their power and performance have been evaluated [52],
[53], with all evaluation data being openly available.

OpenPiton’s P-Mesh Network-on-Chip (NoC) and cache
coherence system IP underlies OPDB’s ability to achieve sig-
nificant scalability, with the original OpenPiton environment
providing the potential for scaling up to 500 million cores
in a system (or 65K cores in a single chip) [9]. A recent
expansion of OpenPiton, BYOC (Bring Your Own Core) [54],
has demonstrated in practice that P-Mesh can further act as
a glue for connecting heterogeneous components. The BYOC
extension (now part of OpenPiton) supports the replacement
of many of OpenPiton’s default components like its cores and
NoCs and provides standard ways to connect new accelerators.
We have exploited this scalability and heterogeneity in the
creation of OPDB to enable the instantiation of heterogeneous
cores and accelerators into a single, scalable system on chip
(SoC). Users of Tursi can create a configuration of their choice
for internal evaluation purposes, featuring a mix of compo-
nents with suitable scalability in number of tiles as needed
for their use case. In addition, as a number of components
have been already integrated the existing infrastructure make
available AXI-Lite and Wishbone interfaces to the NoC that
can be used for introducing further extensions and custom
hardware. We have tested this in the scope of this work by
integrating two accelerators (hosted by OpenCores [12]) with
the P-Mesh NoC. The two accelerators we used were FFT
(Fast Fourier Transformation) [10] and GNG (Gaussian Noise
Generation) [11]. At this point we want to highlight that while
integration of components in a tiled fashion is relatively easy, it
does require editing of the OpenPiton codebase and knowledge
of the NoC interfaces. Specifically, for integrating a new
component, a wrapper module that performs the integration
with the P-Mesh NoC needs to be created. Furthermore, the
“chip” and “tile” modules will need to be modified so that the
new design is instantiated in the appropriate coordinates. As
detailed explanation of these steps is beyond the scope of this
work we direct all interest readers to the BYOC work [54]
and the OpenPiton code repository [55].

The above make OpenPiton an excellent source of bench-
mark designs, providing a plethora of reference points from
real-world, industrial-strength implementations. Moreover, its

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

demonstrated extensibility and active development continu-
ously expand the available modules and possible combinations.

In addition to the OpenCores accelerator cores, the MIAOW
GPGPU is also included in OPDB. MIAOW is the first
open-source RTL implementation of an OpenCL compatible
GPGPU. It is based on the Southern Islands ISA and was
developed by the Vertical Research Group at the University of
Wisconsin-Madison [13].

B. Tursi
After identifying OpenPiton as a suitable source of designs

and a framework that allows for scalability and which can
act as a core of our benchmark suite, we worked to meet the
rest of our target goals: modularity, and extensibility. These
two features are significantly impacted by the scheme used
for dependency description.

The OpenPiton build system follows the industry-standard
convention of relying on file lists (Flists) for dependency
description – Flists are text files that contain a list of all
HDL source code files that a design is composed of. Flists
are a simple and straightforward approach for collecting and
enumerating all components that a design builds upon, and can
be useful in a relatively static design. While Flists could be
used to create and describe a benchmark suite, achieving mod-
ularity and extensibility for the generated benchmarks would
come at a significant overhead to the user. This is because
the flat description provided by Flists hides dependencies
(e.g. common header files) and the naturally occurring design
hierarchies, thus extracting or isolating sub-modules becomes
impossible. To address these limitations, we developed Tursi:
an extensible framework for “pickling” IP blocks based on a
given HDL code base. Leveraging FuseSoC [56] and Icarus
Verilog [57], Tursi “pickles” the chosen designs, bringing
all of the dependent RTL files together into one industry-
standard Verilog file. Any necessary pre-processing (including
for macros) is done in advance by FuseSoC and Icarus Verilog
to remove the need for EDA researchers and developers
to understand the design and its build infrastructure. Tursi
maintains the module hierarchy of the targeted design and does
not collapse the modules to flattened design.

The main design goals for Tursi were to develop a con-
figurable and extensible framework for creating “pickled”
instances of different module/design configurations. To meet
these goals we used the FuseSoC framework and its Core
API (CAPI) description format to describe and process de-
pendencies across modules. FuseSoC is “a package manager
and build system for HDL” [56]. FuseSoC’s CAPI description
format uses the YAML language and contains all information
regarding which files compose the specified module/core,
possible dependencies to other cores, and EDA tool parameters
for a specific task, it also allows dynamic code generation.

To introduce a new module into the Tursi framework (and
thus OPDB), a CAPI file needs to be created to describe the
target module. Besides the files that compose the module and
possible dependencies on other CAPI files, the user needs
to define a build target that performs the “pickling”. This
includes the call to Icarus Verilog and may also include pre-
processing steps for configuration or file generation, like the

Chip
Chip Bridge

Tile

Dynamic Node

L1.5

L2

SPARC

FPU

PicoRV32

Ariane

EXU

FFU

LSU

IFU

MUL

TLU

ALU

Multiplier

ExecD

Counter

FSM

HTSM

LFSR

RTSM

ShiftReg

STSM

Fig. 2: OPDB module hierarchy.

PyHP preprocessor used by OpenPiton or the FFT generator.
Listing 1 presents an example of a Core API file for the
SPARC core that is part of the OpenPiton infrastructure.
The first line defines the Core API version used in the
document, while the second line defines the tag used to
uniquely identify a core in VLNV format (Vendor Library
Name Version). Lines 5 to 22 describe the composition of the
design. A typical instance would includes a list of the HDL
source code files, dependencies to other modules (common
headers or sub-designs), and possibly initialization files for
memories. In the specific example, lines 8 to 15 describe the
dependencies on other submodules, notice that dependencies
to other designs are described through the use VLNV tags.
Lines 17-22 enumerates the files that extend and connect
the submodules from the dependency list to implement the
targeted design; for this instance it is a full SPARC T1 Core.
Finally, lines 29-35 describe a build target. The build target
is composed from the definition of the tools that would be
used their command line configuration, the top-level module
of the design, and the fileset to be used. The specific instance
describes the “pickling” process which uses iverilog to pre-
process the fileset and generate a single “pickled” file. The
“pickled” output file is the merge of all the input files in the
specified fileset(s) with their inclusions and macros expanded.

Describing the dependencies of a given code base using
CAPI allows the generation a natural hierarchy of IP blocks.
By utilizing the dependency description feature of the CAPI
format each component can be broken to several subcom-
ponents that match the sub-blocks of a design schematic.
This hierarchy can be utilized to generate a wide range of
design benchmarks moving from simpler to more complex
designs as we move towards the root of the dependence tree.
CAPI files by clearly describing the dependencies between
a module and its sub-components eliminate redundancy that
would have been unavoidable in other descriptions, such as
Flists. Figure 2 presents a visualization of the hierarchy of
IP blocks that naturally arises from our CAPI description of
OpenPiton’s dependencies. Notice how the graphical represen-
tation of the SPARC Core and its submodules correlates with
the description of Listing 1. After describing the dependencies
between modules and the files that compose them, the task
of generating the different “pickled” instances is reduced
to invoking Tursi with each of the available VLNV tags;
appropriate commandline flags can be used to customize an
instance if wanted.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

Listing 1: SPARC Core Core API file excerpt
1 CAPI =2:
2 name : o p e n p i t o n : : s p a r c c o r e : 0 . 1
3 d e s c r i p t i o n : SPARC Core
4
5 f i l e s e t s :
6 r t l :
7 depend :
8 − o p e n p i t o n : : p i t o n i n c l u d e
9 − o p e n p i t o n : : s p a r c s r a m s

10 − o p e n p i t o n : : s p a r c e x u
11 − o p e n p i t o n : : s p a r c f f u
12 − o p e n p i t o n : : s p a r c l s u
13 − o p e n p i t o n : : s p a r c i f u
14 − o p e n p i t o n : : spa rc mu l
15 − o p e n p i t o n : : s p a r c t l u
16 f i l e s :
17 − s p a r c c o r e . v
18 − s p a r c . v
19 − c p x s p c r p t . v
20 − cpx spc bu f . v
21 − c f g a s i . v
22 f i l e t y p e : v e r i l o g S o u r c e −2001
23
24 . . .
25
26 t a r g e t s :
27 d e f a u l t :
28 f i l e s e t s : [r t l]
29 p i c k l e :
30 d e f a u l t t o o l : i c a r u s
31 f i l e s e t s : [r t l]
32 t o p l e v e l : [s p a r c c o r e]
33 t o o l s :
34 i c a r u s :
35 i v e r i l o g o p t i o n s : [−g 2001 −E]
36
37 . . .

C. The OPDB Design Benchmark

As previously mentioned, the OPDB Design Benchmark
is composed of a large number of pre-generated benchmark
files based on OpenPiton and other open-source hardware
frameworks and codebases, and Tursi, our configurable infras-
tructure for generating “pickled” designs.

Tursi enables us to extract sub-modules of the available tile
components or scale up to multi-tile designs. We have pre-
generated hundreds of design examples for our initial release
of OPDB. In addition, the user can utilize Tursi to generate
different configurations of these designs, scale them up, or
create new designs, either based on new components that are
integrated into OpenPiton or a completely new code base.
Table II and Table III present an overview of the modules
that can be configured and in which ways. In Table II the first
two columns provide the design name and top-level module
name for each of the designs that we expose through Tursi.
The third column, “Macros”, in Table II identifies the modules
that contain macros for register files or memory arrays, while
the remaining columns identify the configuration knobs that
are exposed to the user for each design. Table III expands the
information of Table II by providing a description of the knobs,

what they corresponds to, and the range of configuration
values.

While scalability and level of complexity are important
factors that need to be addressed by emerging EDA tools,
the development and optimization of new approaches is easier
on smaller, simpler circuits [25]. By exploiting the hierarchy
of CAPI files, we are able to describe all dependencies in
OpenPiton and generate a wide range of designs, from large
ones that number billions of transistors to smaller components
of tens or hundreds of gates (see examples in Table IV).

Another important capability of the OPDB benchmark is
its extensibility and heterogeneity. Tursi leverages the “by-
design” scalability and modularity of the OpenPiton codebase
to populate a contemporary, scalable, modular design bench-
mark suite. While the initial release of OPDB focused on
OpenPiton, the infrastructure and methodology for creating
the design benchmarks is independent of it, meaning that
OPDB can be easily extended to other code bases. New
open-source designs which provide CAPI descriptions can be
easily incorporated into OPDB and decomposed into their
sub-components to immediately provide a variety of new
benchmarks. As an example of this we created CAPI files and
pickled a number of other open-source hardware codebases.
These include the MIAOW GPGPU [13] codebase which was
already integrated with OpenPiton, and the GNG [11] and
FFT [10] accelerator cores hosted by OpenCores [12].

The choice of OpenPiton as the core base for our design
benchmark further enables heterogeneity and extensibility at
scale. Though OpenPiton was initially released as a tiled
manycore framework focusing on general purpose processors,
it has evolved into a scalable heterogeneous system, which
supports the integration of different type of tiles, including
multiple processors with heterogeneous-ISA [54], and ac-
celerators like the general-purpose Graphic Processing Unit
(GPGPU) [13] or the FFT [10] and GNG [11] accelerators we
integrated for the purpose of this work.

Overall, based on the above demonstrated growing het-
erogeneity, extensive scalability, and a multitude of config-
uration options and easy extensibility, we believe that the
OPDB Design Benchmark can provide continuous support
for evaluating the performance of EDA tools and enable new
research opportunities. In regard to performance evaluation of
existing or new EDA tools, as hundreds of design points is not
a practical target for evaluating a new technique, we suggest
that subsequent work that uses OPDB focuses on submodules
and design points that match the Piton processor [58]. The
use of these configuration points have the additional benefit
that the instances of these modules have been extensively
verified and taped-out, in addition an extensive power and
energy characterization exists for them [52]. As our target is
for OPDB to be a dynamic benchmark suite which evolves
over time, the suggested comparison baseline will be updated
as new larger instances are evaluated and characterized through
tapeins and tapeouts. In regard to new opportunities, Machine
Learning enabled EDA tools and techniques [14] will benefit
from OPDB’s surplus of provided configurations, allowing
training in different design scales and heterogeneous designs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

TABLE II: OPDB module configuration options

Module name Top module Macros X-dim Y-dim Topology L1-I L1-D L1.5 L2 Hardware Verified

chip chip 3 3 3 3 3 3 3 3 FPGA/Tapeout
chip bridge chip bridge FPGA/Tapeout

dynamic node dynamic node top wrap 2dmesh FPGA/Tapeout
dynamic node top wrap para xbar FPGA

fpga bridge rcv 32 fpga bridge rcv 32 FPGA
fpu fpu FPGA/Tapeout
ifu esl sparc ifu esl FPGA/Tapeout
ifu esl counter sparc ifu esl counter FPGA/Tapeout
ifu esl fsm sparc ifu esl fsm FPGA/Tapeout
ifu esl htsm sparc ifu esl htsm FPGA/Tapeout
ifu esl lfsr sparc ifu esl lfsr FPGA/Tapeout
ifu esl rtsm sparc ifu esl rtsm FPGA/Tapeout
ifu esl shiftreg sparc ifu esl shiftreg FPGA/Tapeout
ifu esl stsm sparc ifu esl stsm FPGA/Tapeout
l15 l15 wrap 3 3 3 3 FPGA/Tapeout
l2 l2 3 3 3 FPGA/Tapeout
MIAOW (GPGPU) neko 3 FPGA/Tapein
pico picorv32 FPGA/Tapeout
sparc core sparc core 3 3 3 FPGA/Tapeout
sparc exu sparc exu wrap FPGA/Tapeout
sparc ffu sparc ffu nospu wrap 3 FPGA/Tapeout
sparc ifu sparc ifu 3 3 FPGA/Tapeout
sparc lsu lsu 3 3 FPGA/Tapeout
sparc mul sparc mul top nospu wrap FPGA/Tapeout
sparc tlu tlu nospu wrap FPGA/Tapeout
tile tile 3 3 3 3 3 3 FPGA/Tapeout
FFT fftmain FPGA
GNG gng FPGA/Tapein

TABLE III: OPDB module configuration options details

Attribute ID in Table II Value 1 Value 2

L1 data cache L1-D size (Bytes) associativity
L1 instruction cache L1-I size (Bytes) associativity
L1.5 cache L1.5 size (Bytes) associativity
L2 cache L2 size (Bytes) associativity
Network topology Topology 2dmesh, xbar -
tiles in X dimension X-dim width [1,256] -
tiles in Y dimension Y-dim width [1,256] -

D. Essential Attributes of OPDB Modules

Table IV presents a high-level overview of the basic mod-
ules provided by OPDB and their essential attributes. The
OpenPiton Dynamic Node, L1.5 cache and L2 cache are part
of the “P-Mesh” uncore (caches, cache-coherence protocol,
NoCs, NoC-based I/O bridges, etc.) of OpenPiton [9]. Modules
prefixed with OST1 are part of the OpenSPARC T1 core [59],
an industrial strength core originally developed by Sun Mi-
crosystems. Modules prefixed with ExecD are part of the
Execution Drafting [60] hardware included with OpenPiton.
MIAOW is the first open-source RTL implementation of
an OpenCL compatible GPGPU [13]. The GNG [11] and
FFT [10] modules are hosted by the OpenCores project [12].
Modules prefixed with Ariane are part of the Ariane RISC-
V core [53], an open-source 64-bit RISC-V application class
processor. The Ariane core is written in SystemVerilog and is
currently not a part of OPDB. We are working to enable the
full inclusion of SystemVerilog codebases in future releases.
As part of this effort, the Ariane sub-modules listed on
Table IV (but not the core) were synthesized after being
automatically translated from SystemVerilog to Verilog using

sv2v [61]. Finally, if multiple prefixes exist (e.g. OpenPiton
OST1) it means both components were included in the design
benchmark.

The modules in Table IV are sorted based on the number of
cells they contain, smallest to largest. All numbers were col-
lected using commercial EDA tools and contemporary technol-
ogy libraries. We run the tools on a 14 core Intel® Xeon® E5-
2680 v4, utilizing only six of the cores running at 2.4 GHz
with 192 GB of memory.

The following list describes each column in Table IV:

∗ Cells: The total number of logic cells used to synthesize
the module; memory macros count as one cell per macro.

∗ Nets: The wires that connect ports to pins and/or pins
to each other; starred (*) numbers are estimates.

∗ Ports: The input, output, or inout ports of the module.
∗ Area (kGE): The area of the synthesized design re-

ported in kilo Gate Equivalent (kGE). The designs that
contain large memory macros, like OpenPiton L2 cache,
would report a bigger number. Note that we turn the
memory macros into blackboxes for the MIAOW module
(marked with u), therefore the area number excludes the
memory macros.

∗ Delay (FO4): Delay of the longest path in the design.
∗ Runtime: Time taken to synthesize a given module.

Short indicates runtime of less that one hour, medium
indicates a runtime between one and six hours, long
indicates a runtime of more than six hours. Due to hierar-
chical synthesis, the runtime for a Tile, which includes an
OST1 core, L1.5 and L2 caches, and three NoC routers,
is much shorter than a core itself.

∗ Memory Macros: The number of memory macros con-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

TABLE IV: OPDB designs essential attributes

Module Cells Nets Ports Area (kGE) Delay (FO4) Runtime Memory Macros

ExecD multiple sub-components <1000 <1000 <1000 <10 <20 short 0
OST1 Instruction Fetch Unit (IFU) 1,900 8,500 4,500 <10 <50 short 5
Ariane Arithmetic and Logic Unit (ALU) 2,900 3,000 270 <10 <40 short 0
ExecD Execution Drafting 3,000 3,400 400 <10 <30 short 0
OST1 Load/Store Unit (LSU) 3,600 14,000 8,000 <10 <50 short 5
GNG Gaussian Noise Generator 6,800 7,000 24 14 <40 short 0
OST1 Floating-point Frontend Unit (FFU) 5,300 5,700 560 33 <40 short 1
OpenPiton Dynamic Node 8,300 8,800 890 24 <40 short 0
OST1 Multiplier Unit (MUL) 11,000 11,000 200 26 <20 short 0
PicoRV32 RISC-V Core 11,000 11,000 620 27 <20 short 0
Ariane Multiplier 14,000 15,000 210 44 <30 short 0
OpenPiton Chip Bridge 24,000 25,000 1,700 87 <20 short 0
OST1 Floating-Point Unit (FPU) 26,000 28,000 1,100 75 <50 short 0
OST1 Trap Logic Unit (TLU) 31,000 33,000 3,100 110 <30 short 0
OpenPiton L1.5 cache 34,000 40,000 7,700 260 <50 short 7
OpenPiton L2 cache 42,000 47,000 6,700 820 <70 short 8
FFT Fast Fourier Transform 80,000 83,000 4,000 285 <30 short 0
OST1 EXecution Unit (EXU) 75,000 76,000 2,300 260 <40 short 0
Ariane RISC-V Core 130,000 150,000 14,000 860 <50 short 32
OpenSPARC T1 Core (OST1) 180,000 190,000 6,300 990 <60 medium 11
OpenPiton OST1 Tile 310,000 420,000* 23,000 2200 <70 short 26
MIAOW GPGPU 658,000 808,000 152,000 u 1800 <50 medium 212
OpenPiton OST1 Chip 3x3 (9 Tiles) 2,800,000 4,500,000* 210,000 20000 <70 short 234
OpenPiton OST1 Chip 5x5 (25 Tiles) 7,800,000 12,000,000* 570,000 56000 <70 medium 650
OpenPiton OST1 Chip 10x10 (100 Tiles) 31,000,000 50,000,000* 2,300,000 220000 <70 medium 2600
OpenPiton OST1 Chip 15x15 (225 Tiles) 70,000,000 110,000,000* 5,100,000 500000 <70 long 5850
OpenPiton OST1 Chip 19x19 (361 Tiles) 110,000,000 180,000,000* 8,200,000 810000 <70 long 9386

tained in the module. Larger memory macros instantiated
in RTL may be split into smaller ones during implemen-
tation process due to technology limitations.

All reported numbers are extracted directly from the reports
generated by the synthesis tool, except starred (*) entries.
Starred (*) entries represent manually calculated estimates.
Manual estimates were required as the hierarchical flow we
used to synthesize larger designs only counts the interface
logic between modules to optimize the process. Therefore, we
add up numbers for sub-modules and provide an estimate.
Furthermore, Cell, Nets, and Ports numbers use two
significant figures of accuracy. Cell counts do not include the
cells included inside memory macros, making our reported
numbers conservative. For example, the Piton chip [58], which
is essentially a 25-tile instance of OpenPiton, was reported
to have 460 million transistors (∼77M cells) [52], while our
synthesized 25-tile chip instance is reported with 7.8M cells
excluding memory macro cells. As Power calculations require
the use of activity factors which can vary significantly based on
the use case, we did not include such projections in this work.
Instead, the publicly available data from the Piton chip [58]
can be used to extract Power and Energy information for a
number of the available OPDB designs.

From Table IV we can see that OPDB provides a wide
range of benchmark designs. The smallest is a 49-bit shift
register numbering only tens of cells, while the largest design –
we provide numbers for – is a 19x19 OpenPiton chip with 110
million cells. This is 44× more cells than the largest previous
benchmark based on real designs, even without the full cell
count for the memory macros. Availability of large designs
is essential for benchmarking new EDA tools. To paraphrase
Alpert [22], a tool which achieves a 5% improvement on a

small design is not as interesting or relevant as a tool which
achieves a 5% improvement on a large design.

Note that the smallest and largest designs present in Ta-
ble IV do not define the limits of OPDB. Smaller designs can
be created by targeting a different module or a sub-module of
the existing ones. In the most trivial case single leaf modules
could be targeted. Similarly, the largest design we report is
only limited by the resources of the machine on which we run
synthesis.

The numbers reported in Table IV are provided as reference
points to assist tool designers in making decisions on which
modules they should target but not as numbers for comparison
against the tools and libraries used in this work.

IV. EARLY IMPACT

Naturally, our team members were the first to use OPDB in-
ternally. In one instance we created an open-source-based
flow for gate-level verification. Specifically, we synthesized the
“pickled” version of the dynamic node from OpenPiton to the
Nangate 45nm Open Cell Library [62] node using Yosys [63]
and subsequently verified the gate-level output using Icarus
Verilog [57] and an RTL-level generated stimuli file. We plan
to release a skeleton of this flow together with OPDB as a
showcase.

Furthermore, an early version of the OPDB benchmark was
shared to a number of academic and industry groups. One
group that received an early OPDB release is the Laboratory
for NanoIntegrated Systems (LNIS) at the University of Utah.
LNIS utilized designs from OPDB during the development and
evaluation of the LSOracle logic optimization framework [64],
[65]. By utilizing pickled design files the development team
was able to concentrate on algorithmic development. Another

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

group that received early access to the OPDB design bench-
marks was the OpenROAD development team, which decided
to incorporated the dynamic node module from OPDB on
their tools’ verification design suite [66]. Rovinski et al. [66]
highlight that bigger designs can be too complex and include
features that are missing from early development editions.
OPDB by providing a wide range of designs both in scale
and complexity allows early development to progress using
smaller/simpler real-world design but also provides full scale
configurations to stress the tools when completed.

V. CURRENT STATUS

Through OPDB we provide an open source, scalable,
modular, heterogeneous, and extensible design benchmark
suite to the EDA community. The hundreds of pre-generated
designs present a plethora of modules that can be used in all
steps of EDA tool developement: from early development and
testing, to algorithmic tuning, and extreme scale evaluation of
a new technique. The Tursi framework is open source and is
entirely based on open source tools. Moreover, all hardware
codebases and frameworks used to create the OPDB suite
are also open source, thus all designs of OPDB can be freely
used, modified, and redistributed [55], [67]. As prior work has
highlighted, the benefits of open source tools and benchmarks
are significant [50]. Open-source benchmarks and tools enable
researchers and developers to gain significant insight that can
be then utilized to improve existing techniques. Furthermore,
they enable modifications to tools and combinations of tools
that can boost efficiency. In regard to benchmarks open source
enables the identification and fixing of bugs in a continuous
fashion, also it enables modifications and conversion of the
designs that enable a broader use by the community. We
believe that adopting an open source policy for development
and evaluation will be beneficial to the overall community, and
we encourage other teams to do the same with derived work.

Early use has shown the potential of OPDB across a range
of different applications, from EDA tool development to scal-
ability testing. To further ease the integration of OPDB with
EDA tools, apart from pickled designs in Verilog, we will
provide Yosys [63] scripts for translating to BLIF and AIGER
formats; pre-generated BLIF files will be provided for a
number of designs too. We encourage other teams to use
OPDB with their tools and integrate their designs. We will
assist teams who want to release their flows and designs and
integrate with OPDB.

Finally, the current version of OPDB includes only Verilog
designs. This is a by-choice feature of OPDB. Due to the lack
of support for SystemVerilog in the open source community
we decided not to include any SystemVerilog modules on our
initial release. We are currently integrating an open source
SystemVerilog to Verilog converter [61] to enable the creation
of Verilog pickled designs from SystemVerilog codebases. We
previewed the use of this converter to provide the results for
the Ariane ALU and multiplier shown in Table IV.

VI. ACKNOWLEDGEMENTS

We sincerely thank Olof Kindgren (FuseSoC) and Zachary
Snow (SV2V) for their help when using their tools, as

well as the LSOracle, Synopsys, Xilinx, OpenROAD, and
other DARPA IDEA performers. We also thank the anony-
mous reviewers for their feedback on earlier versions of this
manuscript. We also thank all the contributors to the open-
source projects utilized in OPDB. This work was supported
in part by the Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under
Agreement FA8650-18-2-7846. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory (AFRL),
Defense Advanced Research Projects Agency (DARPA), or
the U.S. Government.

REFERENCES

[1] R. Brayton and J. Cong, “NSF workshop: Elec-
tronic design automation - past, present, and future,”
http://cadlab.cs.ucla.edu/nsf09/NSF Workshop Report v2.pdf, 2009.

[2] Intel Corporation, “Transistors to transformations: from sand
to circuits - how Intel makes chips,” 2012. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/corporate-
information/museum-transistors-to-transformations-brochure.pdf

[3] The New York Times, “To power A.I., start-
up creates a giant computer chip,” 2019. [Online].
Available: https://www.nytimes.com/2019/08/19/technology/artificial-
intelligence-chip-cerebras.html

[4] P. H. Madden, “Reporting of standard cell placement results,”
in Proceedings of the 2001 International Symposium on Physical
Design, ser. ISPD ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 30–35. [Online]. Available:
https://doi.org/10.1145/369691.369727

[5] Nvidia, “Inside Pascal,” 2016. [Online]. Available:
https://devblogs.nvidia.com/inside-pascal/

[6] Nvidia, “Inside Volta,” 2017. [Online]. Available:
https://devblogs.nvidia.com/inside-volta/

[7] AMD, “Radeon RX Vega 64,” 2017. [Online]. Available:
https://www.amd.com/en/products/graphics/radeon-rx-vega-64

[8] Semiconductor Industry Association, “The international technology
roadmap for semiconductors (ITRS),” 2001-2011.

[9] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and
D. Wentzlaff, “Openpiton: An open source manycore research
framework,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 217–232. [Online]. Available:
https://doi.org/10.1145/2872362.2872414

[10] D. Gisselquist, “A generic pipelined FFT core generator,”
https://opencores.org/projects/dblclockfft, 2018.

[11] G. Liu, “Gaussian noise generator core specification,”
https://opencores.org/projects/gng, 2015.

[12] OpenCores Community, “OpenCores,” https://opencores.org, 2020.
[13] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,

J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and
K. Sankaralingam, “Enabling GPGPU low-level hardware explorations
with miaow: An open-source rtl implementation of a GPGPU,” ACM
Trans. Archit. Code Optim., vol. 12, no. 2, Jun. 2015. [Online].
Available: https://doi.org/10.1145/2764908

[14] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong,
K. Srinivasa, W. Hang, E. Tuncer, A. Babu, Q. V. Le, J. Laudon, R. Ho,
R. Carpenter, and J. Dean, “Chip placement with deep reinforcement
learning,” 2020.

[15] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference
on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

[16] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering,” IEEE Design Test of
Computers, vol. 16, no. 3, July 1999.

[17] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in FORTRAN,” in International
Symposium on Circuits and Systems, 1985, pp. 695–698.

[18] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in International Symposium on Circuits
and Systems,, vol. 3, 1989, pp. 1929–1934.

[19] S. Yang, “Logic synthesis and optimization benchmarks,” 1988.
[20] S. Yang, “Logic synthesis and optimization benchmarks user guide:

Version 3.0,” Tech. Rep., 1991.
[21] K. McElvain, “IWLS’93 benchmark set: Version 4.0,” Tech. Rep., 1993.
[22] C. J. Alpert, “The ISPD98 circuit benchmark suite,” in Proceedings of

the 1998 International Symposium on Physical Design, ser. ISPD ’98.
New York, NY, USA: Association for Computing Machinery, 1998, p.
80–85. [Online]. Available: https://doi.org/10.1145/274535.274546

[23] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000: Standard-cell
placement tool for large industry circuits,” in Proceedings of the 2000
IEEE/ACM International Conference on Computer-Aided Design, ser.
ICCAD ’00. IEEE Press, 2000, p. 260–263.

[24] S. N. Adya and I. L. Markov, “Consistent placement of macro-blocks
using floorplanning and standard-cell placement,” in Proceedings of
2002 International Symposium on Physical Design, ISPD 2002, Del
Mar, CA, USA, April 7-10, 2002. ACM, 2002, pp. 12–17.

[25] F. Corno, M. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3,
Jul 2000.

[26] C. Inacio, H. Schmit, D. Nagle, A. Ryan, D. E. Thomas, Y. Tong, and
B. Klass, “Vertical benchmarks for CAD,” in Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, ser. DAC ’99.
New York, NY, USA: Association for Computing Machinery, 1999, p.
408–413. [Online]. Available: https://doi.org/10.1145/309847.309969

[27] C.-C. Chang, J. Cong, and M. Xie, “Optimality and scalability study
of existing placement algorithms,” in Asia and South Pacific Design
Automation Conference, 2003, pp. 621–627.

[28] C. Albrecht, “IWLS 2005 benchmarks,” 2005. [Online]. Available:
https://ddd.fit.cvut.cz/prj/Benchmarks/IWLS2005.pdf

[29] “International Symposium on Physical Design Contest,” 2005-2019.
[Online]. Available: http://www.ispd.cc/?page=contests

[30] J. Cong and K. Minkovich, “Optimality study of logic synthesis for
lut-based fpgas,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 2, Feb 2007.

[31] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and
J. A. Roy, “The ISPD-2011 routability-driven placement contest and
benchmark suite,” in Proceedings of the 2011 International Symposium
on Physical Design, ser. ISPD ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 141–146. [Online]. Available:
https://doi.org/10.1145/1960397.1960429

[32] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei, “The
dac 2012 routability-driven placement contest and benchmark
suite,” in Proceedings of the 49th Annual Design Automation
Conference, ser. DAC ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 774–782. [Online]. Available:
https://doi.org/10.1145/2228360.2228500

[33] “CAD contest at ICCAD,” http://iccad-contest.org/2019/history.html,
2012-2017.

[34] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and
C. Zhuo, “The ISPD-2012 discrete cell sizing contest and benchmark
suite,” in Proceedings of the 2012 ACM International Symposium on
International Symposium on Physical Design, ser. ISPD ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p.
161–164. [Online]. Available: https://doi.org/10.1145/2160916.2160950

[35] M. M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke, and
C. Zhuo, “An improved benchmark suite for the ISPD-2013 discrete
cell sizing contest,” in Proceedings of the 2013 ACM International
Symposium on Physical Design, ser. ISPD ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 168–170. [Online].
Available: https://doi.org/10.1145/2451916.2451959

[36] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl, and W.-H.
Liu, “ISPD 2014 benchmarks with sub-45nm technology rules for
detailed-routing-driven placement,” in Proceedings of the 2014 on
International Symposium on Physical Design, ser. ISPD ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
161–168. [Online]. Available: https://doi.org/10.1145/2560519.2565877

[37] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL com-
binational benchmark suite,” 24th International Workshop on Logic
Synthesis, 2015.

[38] J. M. Matos, A. Neutzling, R. P. Ribas, and A. Reis, “A benchmark
suite to jointly consider logic synthesis and physical design,” in
Proceedings of the 2015 Symposium on International Symposium on
Physical Design, ser. ISPD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 185–192. [Online]. Available:
https://doi.org/10.1145/2717764.2717785

[39] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, ser. ISPD ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
157–164. [Online]. Available: https://doi.org/10.1145/2717764.2723572

[40] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu, “ISPD
2018 initial detailed routing contest and benchmarks,” in Proceedings of
the 2018 International Symposium on Physical Design, ser. ISPD ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
140–143. [Online]. Available: https://doi.org/10.1145/3177540.3177562

[41] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and
G. Posser, “ISPD 2019 initial detailed routing contest and benchmark
with advanced routing rules,” in Proceedings of the 2019 International
Symposium on Physical Design, ser. ISPD ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 147–151. [Online].
Available: https://doi.org/10.1145/3299902.3311067

[42] A. B. Kahng, H. Lee, and J. Li, “Horizontal benchmark extension for
improved assessment of physical cad research,” in Proceedings of the
24th Edition of the Great Lakes Symposium on VLSI, ser. GLSVLSI
’14. New York, NY, USA: Association for Computing Machinery, 2014,
p. 27–32. [Online]. Available: https://doi.org/10.1145/2591513.2591540

[43] K. Koźmiński, “Benchmarks for layout synthesis - evolution and current
status,” in Proceedings of the 28th ACM/IEEE Design Automation
Conference, ser. DAC ’91. New York, NY, USA: Association
for Computing Machinery, 1991, p. 265–270. [Online]. Available:
https://doi.org/10.1145/127601.127678

[44] J. Pistorius, E. Legai, and M. Minoux, “Generation of very large
circuits to benchmark the partitioning of fpga,” in Proceedings of the
1999 International Symposium on Physical Design, ser. ISPD ’99.
New York, NY, USA: Association for Computing Machinery, 1999, p.
67–73. [Online]. Available: https://doi.org/10.1145/299996.300026

[45] A. B. Kahng and S. Kang, “Construction of realistic gate sizing
benchmarks with known optimal solutions,” in Proceedings of the
2012 ACM International Symposium on International Symposium on
Physical Design, ser. ISPD ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 153–160. [Online]. Available:
https://doi.org/10.1145/2160916.2160949

[46] J. Darnauer and W. W.-M. Dai, “A method for generating random circuits
and its application to routability measurement,” in Proceedings of the
1996 ACM Fourth International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’96. New York, NY, USA: Association
for Computing Machinery, 1996, p. 66–72. [Online]. Available:
https://doi.org/10.1145/228370.228380

[47] M. D. Hutton, J. Rose, J. P. Grossman, and D. G. Corneil, “Characteriza-
tion and parameterized generation of synthetic combinational benchmark
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 10, Oct 1998.

[48] L. Amarú, M. Soeken, W. Haaswijk, E. Testa, P. Vuillod, J. Luo,
P. Gaillardon, and G. De Micheli, “Multi-level logic benchmarks:
An exactness study,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), 2017, pp. 157–162.

[49] W. L. Neto, V. N. Possani, F. S. Marranghello, J. M. Matos, P. Gaillar-
don, A. I. Reis, and R. P. Ribas, “Exact benchmark circuits for logic
synthesis,” IEEE Design Test, vol. 37, no. 3, pp. 51–58, 2020.

[50] S. N. Adya, M. C. Yildiz, I. L. Markov, P. G. Villarrubia, P. N.
Parakh, and P. H. Madden, “Benchmarking for large-scale placement
and beyond,” in Proceedings of the 2003 International Symposium on
Physical Design, ser. ISPD ’03. New York, NY, USA: Association
for Computing Machinery, 2003, p. 95–103. [Online]. Available:
https://doi.org/10.1145/640000.640022

[51] J. Balkind, M. Schaffner, K. Lim, F. Zaruba, F. Gao, J. Tu, D. Wentzlaff,
and L. Benini, “OpenPiton+Ariane: the first SMP Linux-booting RISC-
V system scaling from one to many cores,” in Third Workshop on
Computer Architecture Research with RISC-V, 2019.

[52] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind,
T. M. Nguyen, K. Lim, Y. Zhou, and D. Wentzlaff, “Power and energy
characterization of an open source 25-core manycore processor,” in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 762–775.

[53] F. Zaruba and L. Benini, “The cost of application-class processing:
energy and performance analysis of a Linux-ready 1.7GHz 64bit
RISC-V core in 22nm FDSOI technology,” CoRR, vol. abs/1904.05442,
2019. [Online]. Available: http://arxiv.org/abs/1904.05442

[54] J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li,
A. Lavrov, T. M. Nguyen, Y. Fu, F. Zaruba, K. Gulati, L. Benini,
and D. Wentzlaff, “Byoc: A ”Bring Your Own Core” framework
for heterogeneous-isa research,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 699–714.
[Online]. Available: https://doi.org/10.1145/3373376.3378479

[55] Princeton Parallel Group, “OpenPiton Research Platform,”
https://github.com/PrincetonUniversity/OpenPiton, 2016.

[56] O. Kindgren, “A scalable approach to IP management with FuseSoC,”
in Workshop on Open Source Design Automation (OSDA), 2019.

[57] S. Williams and M. Baxter, “Icarus Verilog: open-source Verilog more
than a year later,” Linux Journal, vol. 2002, no. 99, Jul 2002.

[58] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff, “Piton: A manycore processor
for multitenant clouds,” IEEE Micro, vol. 37, no. 2, pp. 70–80, 2017.

[59] Oracle, “OpenSPARC T1 microarchitecture specifica-
tion,” pp. 432–444, 2008. [Online]. Available:
https://www.oracle.com/servers/technologies/opensparc-t1-page.html

[60] M. McKeown, J. Balkind, and D. Wentzlaff, “Execution Drafting: energy
efficiency through computation deduplication,” in 47th International
Symposium on Microarchitecture, 2014.

[61] Z. Snow, “sv2v,” https://github.com/zachjs/sv2v, 2019, accessed: 2019-
10-12.

[62] Nangate, “Nangate 45nm Open Cell Library,” 2010.
[63] C. Wolf, “Yosys Open SYnthesis Suite,” 2019, accessed: 2019-09-12.

[Online]. Available: http://www.clifford.at/yosys
[64] Laboratory for Nano Integrated Systems, “LSOracle,”

https://github.com/LNIS-Projects/LSOracle, 2019, accessed: 2019-
09-12.

[65] M. Austin, S. Temple, W. L. Neto, L. Amarù, X. Tang, and P. Gaillardon,
“A scalable mixed synthesis framework for heterogeneous networks,”
in 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), 2020, pp. 670–673.

[66] A. Rovinski, T. Ajayi, M. Kim, G. Wang, and M. Saligane, “Bridging
academic open-source eda to real-world usability,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020,
pp. 1–7.

[67] Princeton Parallel Group, “OPDB: OpenPiton Design Benchmark Suite,”
https://github.com/PrincetonUniversity/OPDB, 2019.

Georgios Tziantzioulis is currently a Postdoctoral
Research Associate with the Department of Elec-
trical Engineering, Princeton University. His cur-
rent research focus is on the design of power
and energy efficient computer systems for data-
centers and Cloud Services. Tziantzioulis received
the Ph.D. degree in computer engineering from
Northwestern University and the Diploma degree
in computer and communication engineering from
the University of Thessaly. Contact him at geor-
gios.tziantzioulis@princeton.edu.

Ting-Jung Chang is currently working toward the
Ph.D. degree with the Department of Electrical Engi-
neering, Princeton University. Her research interests
include computer architecture, memory systems, and
emerging transistor technologies. Chang received the
M.A. degree in electrical engineering from Princeton
University. Contact her at tingjung@princeton.edu.

Jonathan Balkind is currently an Assistant Pro-
fessor in the Department of Computer Science, UC
Santa Barbara. His research interests include com-
puter systems, programming languages, and com-
puter architecture with the aim of improving the
efficiency of modern multicore systems in mobile
and datacenter environments. He received the M.Sci.
degree in computing science from the University
of Glasgow and the M.A. degree in computer sci-
ence from Princeton University. Contact him at
jbalkind@ucsb.edu.

Jinzheng Tu is currently working toward the Ph.D.
degree with the Department of Electrical Engineer-
ing, Princeton University. Her research focuses on
in-memory computing, digital circuits, and logical
synthesis. Tu received the B.S. degree in electrical
engineering from Tsinghua University. Contact her
at jinzheng@princeton.edu.

Fei Gao is currently working toward the Ph.D. de-
gree with the Department of Electrical Engineering,
Princeton University. His research interests include
in-memory compute, memory systems, and many-
core processor design. Gao received the M.A. degree
in electrical engineering from Princeton University.
Contact him at feig@princeton.edu.

David Wentzlaff is currently an Associate Professor
with the Electrical Engineering Department, Prince-
ton University. His research interests include parallel
computer architecture, architectures for cloud com-
puting, and biodegradable computing systems. He
has received the NSF CAREER award, the DARPA
Young Faculty Award, the AFOSR Young Investi-
gator Prize, and the Princeton E. Lawrence Keyes
Faculty Advancement Award. Wentzlaff received the
master’s and Ph.D. degrees in electrical engineering
and computer science from the Massachusetts Insti-

tute of Technology. Contact him at wentzlaf@princeton.edu.

