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Abstract
Hardware designs must use latency-insensitive (LI) inter-
faceswhen timing is input-dependent.When timing is input-
independent, designs should use latency-sensitive (LS) in-
terfaces for maximum performance. However, designs com-
monly use LI interfaces to integrate with externally gener-
ated LSmodules–from, e.g., IP generators, high-level synthe-
sis, or domain specific languages. In every fully integrated
design, such uses of LI represent pure overhead. The chal-
lenge is that generators can dramatically change timing in-
terfaces of the modules to meet performance objectives, and
LI interfaces act as a useful design abstraction and enable
timing adaptation.
We define latency-abstract (LA) interfaces, a new design

abstraction, which provide the timing adaptability of LI in-
terfaces at design-time and the efficient integration of LS in-
terfaces. LA interfaces use output parameters, a novel compile-
time mechanism for child modules to return values parent
modules, to abstract and encapsulate timing behaviors at de-
sign time. During design elaboration, LA interfaces are com-
piled into efficient LS interfaces based on parameter values.
While an attractive option, LA interfaces inherit the com-

plexities of parameterized hardware design: the user must
reason how parameters influence timing behaviors of mod-
ules and ensure that designs adapt to interface changes. To
address this challenge and demonstrate the utility of LA in-
terfaces, we design Lilac, a parameterized HDL that uses
a type system track the influence of parameters on timing
behaviors and formally guarantee that every parameteriza-
tion of an LA design results in a circuit without structural
hazards. We demonstrate Lilac’s efficacy by using it to im-
plement parameterized designs and integrate designs gener-
ated from external tools. We show that LA designs use 26–
33% fewer chip resources and achieve 6.8% better maximum
frequencies than comparable LI implementations.

∗Equal contribution.

1 Introduction
Interfaces create the foundation formodular design: they ab-
stract away implementation concerns while providing suffi-
cient details to enable compositional and efficient integra-
tion. In hardware design, interfaces consist of both struc-
tural details, such as the bitwidths of input and output ports,
and temporal behaviors, such as how often a module can ac-
cept new inputs.
Hardware interfaces’ temporal behavior broadly falls into

two categories: latency sensitive (LS) or latency insensitive
(LI).1 With LI interfaces, these concerns take the form of
explicit control signals, such as valid and ready ports that
indicate when a module has produced an output or is ready
to accept an input. LS interfaces, on the other hand, spec-
ify input-independent timing behaviors (“a four-cycle mul-
tiplier that accepts new inputs every other cycle”) and are
efficient because communicating modules can simply use
the already-available clock signal for synchronization. LI in-
terfaces come with fundamental overhead of extra synchro-
nization logic, but they are necessary for handling hardware
units where latencies are fundamentally input-dependent.
Hardware designers also use LI interfaces to decouplemod-

ules from each other, even when those modules have input-
independent latency. One particularly important use case is
when integrating generated hardware modules using core
generators [1, 6, 9], high-level synthesis [30, 36], or acceler-
ator design languages [8, 11, 12, 22, 27]. Even when a gener-
ated hardware module could technically use an LS interface,
it would be awkward to use because the timing behavior
depends on the generator’s inputs. For example, changing
the arithmetic precision of a floating-point core generator
might change the resulting module’s latency and pipeline
depth; the designer would then need to manually inspect
the tool’s output and carefully cascade the change through-
out their design. In this scenario, LI interfaces are a conve-
nient but expensive design abstraction: an LS interfacewould
suffice, but it would require frequent and invasive changes
whenever the generated module changes.

1Though these terms focus on latency, they are used for interfaces that
capture both latency and initiation interval information.
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There is an alternative: using compile-time parameteriza-
tion constructs to adapt to modules’ changing timing behav-
iors and to automatically emit the correct LS interface. We
define a latency-abstract (LA) design as the approach that
uses parameterized LS designs to abstract over timing de-
tails. Because interfaces in LA designs are a compile-time
abstraction, they provide the best of both worlds: the effi-
ciency of LS interfaces and the flexibility of LI interfaces.
However, mainstream HDLs often make LA design infea-

sible for two reasons:

1. Parameters in mainstream HDLs flow in the wrong di-
rection (Figure 3). They make it easy to pass values
from parent modules to the child modules they in-
stantiate: for example, code that instantiates a multi-
pliermight specify its numerical precision as a param-
eter. But when using hardware generators, it is the
generator that determines timing behavior, not the
module that uses the generator. There is no straight-
forward way for the generated multiplier to pass pa-
rameters capturing timing behaviors “upward” to its
parent. Developers therefore resort to ad hoc and error-
proneworkarounds such as using hierarchical param-
eter assignments [19] or external configuration files [31].

2. LA interfaces require subtle reasoning about the influ-
ence of parameters on timing behaviors. Parameter-
ized designs are already difficult: they express fami-
lies of circuits, requiring testing across many different
parameterizations to gain confidence in their correct-
ness. The addition of complex, parameter-dependent
timing behaviors make them even more unappealing
to use.

Together, these limitations make LA interfaces challenging
to use and leave users of mainstream HDLs with an undesir-
able trade-off: pay the cost of an inefficient LI interface or
risk writing brittle parameterization code.
We address the first challenge by introducing output pa-

rameters, a novel, compile-time construct that enables child
modules to return parameter values to their parents. Out-
put parameters precisely capture the kind of inverted flow
needed to express the interfaces of generated modules. We
show that LA interfaces with output parameters can express
generated module interfaces correctly and concisely (§6).
We address the second challenge by designing Lilac, a

parameterized HDL that uses output parameters to enable
compile-time reasoning and verification of LA circuits. Lilac
programs can explicitly capture LA interface and integrate
generated modules (§3). Lilac uses a novel type system (§4)
based on timeline types [28] to ensure that every possible pa-
rameterization of a design will correctly interface with such
modules and lowers them into efficient circuit descriptions

Mult

Add

(a) LS FPU, fixed timing.

Mult

Add

(b) LI FPU, flexible timing.

Figure 1. Circuit diagrams for different arithmetic unit
(FPU) implementations that can adapt to changing timing
interfaces of multipliers and adders.

1 module FPU(clk, a, b, op, out);
2 wire [31:0] add_o, mul_o, add_d[1:0]; wire [3:0] op_d;
3 Add(.clk, .a, .b, .out(add_o)) add;
4 Mul(.clk, .a, .b, .out(mul_o)) mul;
5 always @(posedge clk)
6 op_d <= { op, op_d[3:1] };
7 add_d[1] <= add_o; add_d[0] <= add_d[1];
8 assign out = op_d[0] ? add_d[0] : mul_o;
9 endmodule

Figure 2. FPUwith four-cycle multiply and two-cycle adder.
The implementation delays the adder’s output and the op
signal to balance the pipeline.

(§5). Finally, we demonstrate that Lilac can be used to imple-
ment efficient LA designs which have substantially lower re-
source usage and higher clock frequencies compared to sim-
ilar LI designs (§7). These features let Lilac flexibly express
LA designs that offer the compositionality and correctness
of LI interfaces without their overheads.

2 Integrating Generated Hardware
We motivate the need for latency-abstract interfaces by de-
signing a floating-point unit (FPU) that integrates high-quality
adder andmultiplier implementations generated by FloPoCo [6],
an FPGA-focused floating-point core generator.This section
examines what integrating such generated modules looks
like when using LS, LI, and parameterized design with cur-
rent HDLs. We then highlight the potential benefits of LA
design and the challenges it poses with traditional HDLs.

2.1 Latency-Sensitive Interfaces
FloPoCo accepts as input which computation to imple-

ment (add,multiply) and performance goals (frequency, FPGA
family) to target; it outputs a pipelined, LS implementation
and reports its latency. Alternating the performance goals
may change the LS interface to the module in unpredictable
ways.



Our initial FPU implementation (Figure 1a) uses LS in-
terfaces. We run FloPoCo with specific performance char-
acteristics and use the latency information to integrate the
generated modules. Figure 2 overviews the implementation
code for a four-cycle multiplier and two-cycle adder: the
implementation forwards the inputs directly into the mod-
ules and selects the output based on the op signal. Since the
multiplier takes two extra cycles, the implementation delays
the output from the adder and the op signal to balance the
pipeline (lines 5–7).
While straightforward, this implementation has a signif-

icant limitation: trying a new design point requires chang-
ing the pipeline balancing logic.This is because FloPoCo can
change the timing behaviors of the implementations it gen-
erates, and our LS implementation fundamentally relies on
the specific timing characteristics of the adder and multi-
plier. This also limits performance portability: changing the
FPGA target would require manual changes to the control-
logic code.

2.2 Latency-Insensitive Interfaces
The fundamental problem with our LS implementation is
that it cannot adapt to changing timing behaviors. Latency-
insensitive (LI) interfaces [5] abstract away timing details
using synchronization signals. A common LI interface style
is a ready–valid handshake that synchronizes one producer
and one consumer. The producer uses a 1-bit valid signal to
indicate that a separate data signal is meaningful; the con-
sumer uses a 1-bit ready signal to tell the producer that it is
ready to consume the data. When ready and valid are both
asserted in the same clock cycle, a transaction occurs.
We can decouple our FPU’s control logic from the spe-

cific timing behaviors of the compute modules by wrapping
them with a ready–valid interface that provides a stable in-
terface. With this approach, whenever FloPoCo generates a
new adder or multiplier, we can locally change the LI wrap-
per to generate the correct ready and valid signals; the FPU
control logic can remain unchanged. Figure 1b visualizes
this design: the adder and multiplier have extra logic that
tracks their ready and valid signals which are then used by
the finite state machine (FSM) within the FPU to control the
flow of the data. The FPU also has to use a FIFO queue to
hold the op signal so it can correctly multiplex between the
adder and multiplier outputs. The extra resources used for
the coordination logic can quickly dominate the total cost of
smaller circuits, making LI interfaces especially expensive
for fine-grained integration.
The LI wrappers provide design modularity, but there is

a cost. We need additional ready and valid signals, FSMs to
orchestrate them, and a FIFO for bookkeeping. These addi-
tional components result in both area (chip resources) and
performance overheads and yield a more complex design
that is harder to verify. Table 1 quantifies the hardware cost
of LI interfaces by synthesizing designs using Vivado and

Configuration LUTs Registers Freq. (MHz)
LI (A=1, M=1) 614 824 134.5
LS (A=1, M=1) 441 205 163.0
LI (A=4, M=2) 662 1426 224.4
LS (A=4, M=2) 459 482 280.8

Table 1. Resource usage of latency-sensitive (LS) and
latency-insensitive (LI) FPU implementations. 𝐴 and 𝑀 are
the latencies of the FloPoCo-generated adder andmultiplier.

Top AU
FAdd flopoco

latency=3

(a) Top-down parameterization. Adder latency is plumbed through
the hierarchy to parameterize pipeline-balancing shift register.

Top AU
FAdd flopoco

(b) Bottom-up parameterization. Generated modules produce out-
put parameters resulting in clean encapsulation.

Figure 3. Flow of parameters when using generators.

comparing them to LS implementations. The LI interface re-
quires 3–4× more registers, uses 29–31% more LUTs, and
reduces the maximum frequency by 21–25%. For the higher
frequency designs, the critical path for the LS implementa-
tion remains within the compute units; for the LI design, the
handshaking logic itself becomes the critical path.
For designs with fundamentally input-dependent timing

behaviors, such as a memory hierarchy, LI interfaces are
mandatory and their cost is unavoidable. However, for our
FPU design, where each specific adder or multiplier has a
latency-sensitive interface, the cost is pure overhead. The
design-time benefit of ease of integration and correct rea-
soning provided by an LI interface conflicts with the need
for the highest performing implementation.

2.3 Parameterized Design
A third alternative is to implement a parameterized design.
Such designs use compile-time values called parameters, along
with metaprogramming constructs such as loops and con-
ditionals, to generate circuits. An HDL frontend evaluates
these constructs during its elaboration phase. In our case,
this means that if we implement an FPU using parameters
for the latencies of the adder and the multiplier, we could
generate efficient LS interfaceswithout hard-coding any tim-
ing details.
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Interface Design Compile Execute

Latency Sensitive (LS) 3 3 3

Latency Abstract (LA) 7 3 3

Latency Insensitive (LI) 7 7 3

Table 2.When an interface’s timing behavior is known.

To cope with possible timing mismatches between the
adder and multiplier, our parameterized design must gen-
erate a configurable number of pipeline stages to balance
the latencies. For example, if the adder takes two cycles but
the multiplier takes four, the output from the adder needs
to be delayed by two cycles to ensure that the FPU’s latency
is always four cycles. The FPU can use a parameterized shift
register module, Shift that delays a signal by 𝑁 cycles:
localparam Max = Add_L > Mul_L ? Add_L : Mul_L;
localparam Add_B = Max - Add_L;
localparam Mul_B = Max - Mul_L;
Shift#(.N(Add_B)) s_add(.in(sum), .out(sum_d));
Shift#(.N(Mul_B)) s_mul(.in(mul), .out(mul_d));
Shift#(.N(Max)) s_op(.in(op), .out(op_d));

This delay logic suffices for any pair of latencies for our
FloPoCo-generated adder and multiplier, Add_L and Mul_L.
But implementing it in currentHDLs like Verilog can quickly
become awkward.
The first challenge is that our FPU must somehow know

these latency parameters, Add_L and Mul_L, to generate this
delay logic. HDL parameters flow top down, from parent
modules to child modules, so the only obvious solution is
to add these parameters to the FPU module’s signature and
“plumb” them down to the delay logic (Figure 3a). But this
violates encapsulation. Users of the FPU module should not
need to know about the adder’s and multiplier’s latencies;
FloPoCo determines the latency of the modules. Logically,
we want these parameters to flow bottom up, from the adder
and multiplier up to the FPU (Figure 3b). Current HDLs do
not allow this, so users adopt various ad-hoc approaches
such as using hierarchical references [19], passing them us-
ing external configuration files [23, 31], or using complex
parameter negotiation frameworks [7].
The second challenge is that this parameterized approach

implicitly encodes assumptions about the timing behavior
of modules and the relationships between parameters. The
designer of the FPU module would like to locally reason
about the relationship between the parameters Add_L and
Mul_L. However, an external user can easily make the mis-
take of flipping the two parameters when they are provided
as inputs causing the FPU module to generate incorrect bal-
ancing logic.The flexibility ofmetaprogramming alsomakes
it error-prone and potentially more difficult to verify.

1 gen "flopoco" comp FPAdd[#W]<G:1>( // Fully-pipelined
2 val_i: interface[G] // Provide new input
3 l: [G, G+1] #W, r: [G, G+1] #W // Required in cycle 1
4 ) -> (o: [G+#L, G+#L+1] #W // Provided on cycle L
5 ) with { some #L where #L > 0; } // Output parameter

Figure 4. Latency-abstract interface for FloPoCo adders.
The latency is determined at elaboration-time.

2.4 Latency-Abstract Interfaces
The solution lies in recognizing that generator-produced de-
signs occupy a unique point in the design space: their tim-
ing behaviors are parameterized at design-time but concrete
at compile-time (Table 2). We name such interfaces latency-
abstract (LA) interfaces as they abstract away timing details
of modules, but do so using parameters. They capture how
a module’s timing behaviors are influenced by various pa-
rameters. When using a latency-abstract (LA) module, an
implementation must itself be parameterized and adapt to
changes in the timing behavior of the LA module. This is
similar to how amodule interfacing with an LI module must
itself present an LI interface. The complex interdependence
of parameters and timing behaviors also explains the chal-
lenges in verifying the correctness of integration of such
modules.
We address these challenges by designing Lilac, the first

HDL to capture LA interfaces and provide compile-time rea-
soning for them. Lilac uses a novel type system based on
timeline types [28] which can express and statically reason
about parameters’ influence on a module’s timing behavior
and formally guarantee that there are no structural hazards
or resource reuse violations in any parameterization of the
design.

3 The Lilac Language
Lilac’s design must solve two related problems: specifying
latency-abstract (LA) interfaces of externally generatedmod-
ules, andwriting correct, parameterized programs using such
interfaces. Lilac extends timeline types [28]—a type-system
to reason about LS designs—to capture the effects of param-
eters on timing behaviors and introduces output parameters
to capture the timing behaviors of generated modules. To-
gether, these features enable it to capture interfaces from a
variety of generators (§6) and provide compile-time reason-
ing about LA interfaces (§4).
We continue with our FPU example and show how Lilac

captures design-time unknown timing behaviors using latency-
abstract interfaces (§3.1), propagates output parameters to
enable modular design (§3.2), and correctly adapts to chang-
ing timing behaviors (§3.3).

3.1 Specifying Latency-Abstract Interfaces



External generators like FloPoCo choose the timing be-
haviors ofmodules based on input parameters, such as bitwidth,
as well as optimization directives. Figure 4 shows the Lilac
interface for a FloPoCo-generated adder. Like a traditional
parameterized module, it has an input parameter #W which
controls the bitwidth of the ports (lines 1–4). The Lilac inter-
face also captures the module’s timing behavior with time-
line types.Themodule defines an event 𝐺, provided by the in-
put valid signal val_i, to represent when the module starts
executing.The delay of the event (G:1) captures the number
of cycles needed between consecutive inputs; since the de-
lay is one, the module can accept inputs every cycle. Avail-
ability intervals impose constraints on inputs; the input l
and r are required in the first clock cycle represented by the
interval [𝐺, 𝐺 + 1).
The cycle in which the output is produced, i.e., the latency

of the module, is determined by FloPoCo. Lilac introduces
the output parameter #L to represent the latency, with a
where clause to constrain it to be at least one. Unlike the in-
put parameter #W, the output parameter is produced by the
FPAdd and can be accessed by the parent module. This pa-
rameter is abstract during design-time, i.e., a parent module
using the adder cannot assume anything about its value, ex-
cept that it is at least one. During compilation (§5), Lilac’s
compiler executes FloPoCo to generate an adder implemen-
tation and substitute a concrete value for #L.

3.2 Programming with Latency-Abstract Interfaces
Section 2.3 described the challenges of correctly integrat-

ing modules whose parameters influence timing behaviors.
Using LA interfaces for the adder and the multiplier, we im-
plement an FPU (Figure 5a) and introduce Lilac program-
ming constructs. However, this implementation is erroneous:
it does not balance the pipeline when the latency of the
adder and the multiplier are different and will only work
when their latencies match. We demonstrate how Lilac’s
type-system, which builds upon timeline types [28], reasons
about output parameters and ensures that the design bug is
caught at compile-time.
The implementation instantiates the adder and multiplier

modules (line 5) with the input parameter #W, which works
like parameters in traditional HDLs. On line 7, it invokes
the modules with the inputs when the event G occurs. In-
vocations (from Filament [28]) associate a particular use of
an instance with when an event occurs and enable Lilac’s
type-system to reason about the clock cycle in which a com-
putation occurs. When compiling this design to RTL, Lilac
generates the following error:
mux := new Mux[#W]<G>(op, add.out, mul.out);

Signal available in [G+Add::#L, G+Add::#L+1]
but required in [G, G+1]

The error states that the output port of the adder will have a
valid value on cycle Add::#L while the multiplexer, which

1 comp FPU[#W]<G:1>(
2 op: [G, G+1] 1, l: [G, G+1] #W, r: [G, G+2] #W
3 ) -> (o: [G, G+1] #W) {
4 // Instantiate the modules
5 Add := new FPAdd[#W]; Mul := new FPMul[#W];
6 // Schedule execution when G occurs
7 add := Add<G>(l, r); mul := Mul<G>(l, r);
8 mx := new Mux[#W]<G>(op_s, add_s.out, mul_s.out);
9 out = mx.out; // produce output
10 }

(a) Initial, erroneous implementation.
1 comp FPU[#W]<G:1>(..) -> (o: [G+#L, G+#L+1] #W) with {
2 some #L; } { .. // Instantiate and use modules.
3 let #Max = Max[Add::#L, Mul::#L]::Out;
4 sa := new Shift[#W, #Add_B]<'G+Add::#L>(add.out);
5 sm := new Shift[#W, #Mul_B]<'G+Mul::#L>(mul.out);
6 so := new Shift[#1, #Max]<'G>(op.out);
7 mx := new Mux[#W]<G+#Max>(so.out, sa.out, sm.out);
8 #L := #Max; // Latency of this module
9 }

(b) Parameterized code to balance the pipeline.

Figure 5. Latency-abstract FPU implementation in Lilac.
The erroneous implementation is rejected by Lilac’s type
system with a compile-time error. The corrected implemen-
tation balances the pipeline and itself provides a latency-
abstract interface.

is invoked on the first cycle, attempts to read its value in
the first cycle. To fix the error, the user must invoke the
multiplexer at the correct time. However, there is no con-
crete value of time at which the computation will occur; it
depends upon the latency of the adder that FloPoCo gener-
ates during elaboration. To correctly schedule the computa-
tion, the user must use the output parameter representing
the adder’s latency:
mux := new Mux[#W]<G+Add::#L>(op, add.out, mul.out);

The invocation is now scheduled using the output parameter
Add::#L: the compiler will select the exact cycle in which
to execute the multiplexer after elaboration. Unfortunately,
this fix is insufficient:
mux := new Mux[#W]<G+Add::#L>(op, add.out, mul.out);

Signal available in [G+Mul::#L, G+Mul::#L+1]
but required in [G+Add::#L, G+Add::#L+1]

While the adder’s output is available in cycle Add::#L, the
multiplier’s output is not; it is available in cycle Mul::#L
and Lilac cannot show that these are the same. A correct im-
plementation has to balance the pipeline using the latency
of both the adder and the multiplier. Unlike in a traditional
HDL, this is a compile-time error rather than a silent error.

3.3 Parameterization in Lilac



Rachit Nigam et al.

1 comp Shift[#N]<G:1>(
2 input: [G, G+1] 32) -> (
3 out: [G+#N, G+#N+1] 32) where #N > 0 {
4 bundle<#i> w[N+1]: [G+#i, G+#i w+1] 32;
5 w[0] = input; out = w[#N];
6 for #k in 0..#N {
7 R := new Reg[32]<G+#k>(w[#k]);
8 w[#k+1] = r.out;
9 }}

(a) Shift register implementation.

[G,G+1]

[G+1,G+2]

[G+#i,G+#i+1]

[G+#N,G+#N+1]

(b) Timing.

Figure 6. A shift register implementation in Lilac and a
block diagram visualizing the timing of each bundle wire.

To fix the issue, we need a parameterized shift register to
delay the signal. Figure 6 implements a shift register in Lilac
and introduces its metaprogramming capabilities.

Parametric signatures. Lines 1–3 in Figure 6a define
the signature of the Shiftmodule. In this case, the designer,
not an external tool, controls the latency by defining an in-
put parameter #N and setting the output to appear in the𝑁th
cycle. This means that, for example, when using the output
from a Shift[4], we schedule the downstream computa-
tion with G+4 instead of using an output parameter.

Bundles and loops. A Lilac program might use parame-
ters to instantiate and schedulemodules. For example, Shift
instantiates 𝑁 Reg modules and forwards the output from
register 𝑖 to register 𝑖 + 1. The availability interval for the
𝑖th register depends upon how many registers come before
it (Figure 6b). Lilac introduces bundles, a multidimensional
array where the availability of a value at a particular index
depends on the index itself. For example, the bundle on line 4
has𝑁+1 elements and states that the 𝑖th element’s availabil-
ity interval is [𝐺+ 𝑖, 𝐺+ 𝑖+1). The input signal is assigned to
w[0] and the output signal is read from w[N] (line 5) which
have availabilities [𝐺, 𝐺 + 1), and [𝐺 + 𝑁, 𝐺 + 𝑁 + 1) respec-
tively. Finally, we use a compile-time for loop (lines 6–9) to
instantiate registers and invoke them on the 𝑘th cycle, using
the value from the 𝑘th index in the bundle as the input, and
assigning the output of the register to the index 𝑘 + 1.
Like loops, bundles are a compile-time construct: after

elaboration (§5), our shift register will look like the follow-
ing code where the bundle has been completely eliminated
and the implementation simply forwards values through a
chain of registers:
R1 := new Reg; r0 := R0<G>(input);
R1 := new Reg; r1 := R1<G+1>(r0.out); ...

Putting it together. The shift register lets us balance our
FPU’s pipeline (Figure 5b). First, we compute the maximum
of the two latencies using parameter access. The Lilac com-
ponent Max has an empty body and defines a single output

parameter Out which is constrained to the expression #A >
#B ? #A : #B; it is only used as a function over parame-
ters.The combination of input and output parameters allows
Lilac programs to use components as pure functions over
parameters and abstract away routine computations. Next,
we compute the amount of balancing needed (#Add_B and #
Mul_B, elided), and use that to delay each compute module’s
outputs as well as the op signal. Finally, because the latency
of the FPU depends on the latency of the compute module,
we abstract its latency using #L and provide a binding in the
body.

4 Type System
Lilac’s type system analyzes each component in the pro-
gram to ensure that it matches its provided signature and
uses its submodules correctly (based on their signatures). To
enforce that each component can be safely pipelined, Lilac
uses an SMT solver to enforce that its parameterized expres-
sions obey the requirements of timeline types [28].

4.1 Syntax
Figure 7 lists the syntax of the Lilac HDL, which builds upon
Filament’s basic structural constructs and timeline type sys-
tem [28]. Filament does not support parameters. It has three
main constructs: instantiations (to instantiate submodules),
invocations (to schedule computations), and connections (to
connect ports). Lilac adds parameterization and metapro-
gramming constructs.

Parameter expressions. Lilac adds parameter expressions
(P) and allows them to occur in every location where con-
stants are allowed in Filament (availability intervals, event
delays, and scheduling expressions, etc.). Parameters are de-
fined at three locations: (1) signatures (𝑠𝑖𝑔) declare input
parameters, (2) some bindings (𝑏𝑖𝑛𝑑) define output param-
eters, and (3) let bindings (𝑐𝑚𝑑) name parameter expres-
sions. The built-in arithmetic operators (𝑏𝑖𝑛𝑜𝑝) are directly
encoded into SMT queries, allowing the solver to reason
about computations.
More complex computations can be specified in twoways.

Parameter access expressions allow instantiation and use of
components to get their output parameters; for example, Max
[#A, #B]::#Out instantiates the Max component and gets
the output parameter representing the max of𝐴 and 𝐵. Lilac
also declares common operations such as 𝑙𝑜𝑔2 and 𝑒𝑥𝑝2 as un-
interpreted functions within its encoding (§4.2) and provides
common equalities such as 𝑒𝑥𝑝2(𝑙𝑜𝑔2(𝑁)) = 𝑁; the solver
relies on these equality to prove fact and requires the user
to provide addition facts using assume statements if more
complex reasoning is required.

Component signatures. Lilac signatures (sig) specify the
events, parameters, and ports associated with a module. A
signature declares output parameters using with bindings



𝑥 ∈ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑝 ∈ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐺 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠
𝑏𝑜𝑝 ∈ {+, −, ×, ÷, %} 𝑢𝑛𝑜𝑝 ∈ {log2, exp2}
P ∶∶= ℕ ∣ 𝑝 ∣ 𝑏𝑜𝑝(𝑃1, 𝑃2) ∣ 𝑢𝑛𝑜𝑝(𝑃) ∣ 𝑥1[P*]::𝑥2
C ∶∶= 𝑃1 = 𝑃2 ∣ 𝑃1 ≤ 𝑃2 ∣ ¬𝐶 ∣ 𝐶 ∧ 𝐶 ∣ 𝐶 ∨ 𝐶
ival ∶∶= [𝐺1 + 𝑃1, 𝐺2 + 𝑃2] port ∶∶= 𝑥 ∶ 𝑖𝑣𝑎𝑙 𝑝
bind ∶∶= some 𝑝where c*
sig ∶∶= 𝑥[P*]⟨𝐺 ∶ 𝑃⟩(port*)with {bind*}whereC*
mod ∶∶= comp sig {cmd*} ∣ extern sig ∣ gen tool sig

acc ∶∶= 𝑥 ∣ 𝑥1.𝑥2 ∣ acc[𝑃1..𝑃2]
cmd ∶∶= 𝑐𝑚𝑑1; 𝑐𝑚𝑑2 ∣ acc1 = acc2 ∣ let 𝑝 = 𝑃 ∣ 𝑝 ∶= 𝑃

∣ 𝑥1 ∶= new 𝑥2[P*] ∣ 𝑥1 ∶= 𝑥2⟨𝐺 + 𝑃⟩(acc*)
∣ bundle⟨p*⟩ 𝑥[P*] ∶ ival* ∣ assume 𝐶 ∣ assert 𝐶
∣ if 𝐶 {cmd1} else {cmd2} ∣ for 𝑝 in 𝑃1..𝑃2{cmd }

(a) Language constructs. Filament constructs highlighted.

⟦𝑃⟧ ∶ 𝒬𝑣 × 2𝐶 ⟦𝑐𝑚𝑑, 2𝐶⟧ ∶ 𝒟 × 2𝐶 × 𝒬 pfunc(𝑥𝑐, 𝑥𝑜) ∶ 𝒬𝑣
clauses(𝑥1, 𝑥2) ∶ 𝐶 pargs(𝑥, P*) ∶ 𝐶 defs(𝑥) ∶ 𝒟 × 𝒟

⟦𝑛⟧ = 𝑛, ∅ ⟦𝑝⟧ = 𝑝, ∅
𝑣1, 𝐶1 = ⟦𝑃1⟧ 𝑣2, 𝐶2 = ⟦𝑃2⟧

⟦(𝑏𝑜𝑝(𝑃1, 𝑃2)⟧ = bop 𝑣1 𝑣2, 𝐶1 ∪ 𝐶2
𝐶1 = clauses(𝑥1, 𝑥𝑜) 𝐶2 = pargs(𝑥1, P*) 𝑓 = pfunc(𝑥1, 𝑥𝑜)

⟦𝑥1[P*]::𝑥𝑜⟧ = 𝑓, 𝐶1 ∪ 𝐶2 Acc

𝑑𝑖, 𝑑𝑜 = defs(𝑥2) 𝐶𝑜 = ⋃𝑥𝑜∈𝑑𝑜 clauses(𝑥2, 𝑥𝑜)
𝐶𝑝 = pargs(𝑥2, P*)

⟦𝑥1 ∶= new 𝑥2[P*], 𝑝𝑐⟧ = 𝑑𝑜, 𝑝𝑐 ∪ 𝐶𝑜, (assert 𝑝𝑐 ⇒ 𝐶𝑝) Inst

𝑑𝑡, 𝑝𝑐𝑡, 𝑞𝑡 = ⟦𝑐𝑚𝑑1, 𝑝𝑐 ∧ 𝑐⟧ 𝑑𝑓, 𝑝𝑐𝑓, 𝑞𝑓 = ⟦𝑐𝑚𝑑2, 𝑝𝑐 ∧ ¬𝑐⟧
⟦if(𝑐) 𝑐𝑚𝑑1 else 𝑐𝑚𝑑2, 𝑝𝑐⟧ = ∅, 𝑝𝑐, (assert 𝑞𝑡 ∧ 𝑞𝑓) Cond

(b) Selected encoding rules for generating SMT constraints.

Figure 7. Lilac language and rule for encoding constructs into SMT queries

and can specify constraints on them using where clauses.
Finally, signatures can point to either Lilac modules (comp),
modules implemented in Verilog (extern), or modules gen-
erated by a tool (gen). Lilac’s compiler uses the last kind
of declaration to automatically invoke the generator while
elaborating the program (§5).

Metaprogramming constructs. Lilac supports bounded
for-loops, conditional expression, and recursive module in-
stantiation with the standard semantics. Bundles provide
a way to track availability intervals for generated signals
and assert and assume allow for compile-time reasoning
of facts.

4.2 Constraint Generation
Within a single component, there are two sources structural
hazards: reading valueswhen they are not semanticallymean-
ingful, and mapping multiple logical computations to the
same physical resource in the same clock cycle. These are
logical bugs: within the design, they appear asmistakeswithin
the control logic of a circuit which might attempt to use
a value on a wire before the correct amount of time has
elasped, or assume that a module has accepted a input be-
fore it really does. However, such mistakes do not cause an
obvious run time failure; the designwill keep executingwith
incorrect values causing silent data corruption.
Filament [28] defines two properties to eliminate struc-

tural hazards: latency safety requires that values on wires
are only read when they are semantically meaningful, and
resource safety requires that, when using a partially-pipelined
module, inputs are sent with appropriate delays between

them.2 Lilac enforces them by generating constraints that
ensure:

1. Valid reads: Components only read from ports during
their availability intervals, i.e., when their values are
semantically valid.

2. Non-conflicting writes:There is only one logical driver
of a port per clock cycle.

3. Appropriate delays:Components respect the initiation
intervals of their subcomponents: if d is the subcom-
ponent’s delay, then the component waits at least d
cycles before invoking the subcomponent again.

For each property, Lilac’s type system generates a set of
constraints over symbolic parameters and ensures that, no
matter what parameterization of a design is selected during
elaboration, it will not have such silent logical bugs.

Encoding function. The encode function (Figure 7b) an-
alyzes parameterized programs and generates constraints
for the SMT solver. The encode function transforms each
language construct in Lilac into a set of SMT constraints.

⟦𝑐𝑚𝑑, 2𝐶⟧ ∶ 𝒟 × 2𝐶 × 𝒬
It takes the current command (cmd) and a path condition
(2𝐶), which represents the set of facts true in the current
branch of the parametric program, and returns a set of SMT
variables to define (𝒟), a new path condition, and the SMT
query (𝒬). The rules helper functions to access the parame-
ters defined by components (defs) and constraints on them
(clauses), as well as constraints created by substituting con-
crete expression for input parameters (pargs).
2Filament calls these properties well formedness and pipeline safety
respectively.
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Parameter expressions. Parameter expressions (⟦𝑃⟧) are
encoded to generate SMT values (𝒬𝑣)—which correspond to
computations over SMT variables—and a set of constraints.
Encoding numbers and parameter variables returns their SMT
representation; binary operations return the equivalent SMT
function, and unary functions return the application of un-
interpreted functions to parameter expressions.

Encoding output parameters. For each output parame-
ter defined by a component, Lilac declares a new uninter-
preted function that depends on all the input parameters
of the component. For example, given the following compo-
nent:
comp Max[#A, #B]<G:1>(..) with { some #O }

Lilac defines the following uninterpreted function:
(declare-fun Max_O ((A Int) (B Int)) Int)

Whenever the specific output parameter is used in the pro-
gram, Lilac will replace it with (Max_O A B); the Acc rule
shows an example of this. This encoding allows Lilac pro-
grams to reason these specific examples:
FAdd[16,8]::#L == FAdd[16,8]::#L // True
Max[#A,#B]::#O == Max[#X,#Y]::#O // if #A==#X and #B==#Y

The instantiation rule (Inst) requires that the input ex-
pressions obey the constraints on input parameters, declares
output parameters defined in the signature as new variables,
and allows the path condition to assume the where-clause
assertions on them.

Compile-time language constructs. Lilac symbolically
reasons about compile-time constructs such as conditionals.
The Cond shows how the encoding function adds the if con-
dition to the path condition when checking branches. Rules
for port connections and for loops (not shown) ensure that
when a signal is read, it is available according to its avail-
ability interval, and that instances are not reusedmore often
than the component’s delay allows for.
After constructing a constraint, the type system asserts

its negation and asks and SMT solver [26] to find a satisfy-
ing assignment. If the solver finds such an assignment, this
means that the user design violates the constraint; we can
use this assignment to construct a counterexample demon-
strating to the user that a set of concrete parameters values
will create a bug in the design.

5 Elaboration
The compiler elaborates well-typed Lilac programs by exe-
cuting generators to get concrete bindings for output param-
eters, evaluating compile-time constructs, and inlining bun-
dles. The compiler then produces a valid Filament program
which can be compiled down to a Verilog implementation.
The compiler is written in 16k lines of Rust code.

Design Lines Time (ms)

RISC 3-stage Base 480 160
Gaussian Blur Pyramid (§7) 595 205
FFT (Lilac only) 1207 403
FFT (using FloPoCo) 1221 442
Lilac’s standard library 1310 900
BLAS Level 1 Kernels 1346 1295

Figure 8. Type checker’s performance.

Top-down elaboration. In HDLs with only input param-
eters, the compiler can processmodules top-down, completely
processing a parent module before elaborating its submod-
ules. This is possible because all the parameters needed to
elaborate a module are already available and fully concrete.
Such a scheme does not work for Lilac programs. To under-
standwhy, consider the following fragment from Figure 5b:
A := new FAdd[#W]; M := new FMul[#W]; // FloPoCo outputs
let #Max = Max[A::#L, M::#L]::#Out;
SA := new Shift[#W, #Max-A::#L];

In order to instantiate the Shiftmodule, the elaborator needs
concrete values for the output parameters A::#L and M::#
L which will not be available until FloPoCo generates the
adder and multiplier modules. Furthermore, output parame-
ters can be used to control loops and conditionals and recur-
sive module instantiation allows Lilac to define components
with no defined order of elaboration.

Elaboration algorithm. The algorithm scans the mod-
ule for instantiations that only use parameter expressions
that can be fully evaluated; if no such instantiation exists,
then there is a cycle in the instantiation graph and the algo-
rithm terminates with an error. The algorithm drills down
themodule hierarchy until it finds a completely elaboratable
module which only contains references to unparameterized
Lilac modules, external modules, and generator instantiated
gen modules. Each generator provides a configuration file
that defines the modules it produces and the mechanism
to extract bindings for output parameters for each module
(reading the command-line output, looking for a file, etc.).
Using this information, the elaborator executes all loops and
conditionals and instantiates gen modules by invoking the
relevant tool. Once the generator produces a module, the
elaborator collects the bindings for the module’s output pa-
rameters and continues elaborating the parent module. This
continues until all the modules are completely elaborated
and stitched back together. After this, the elaborator runs a
second pass to inline all reads and writes from bundles to
get a fully structural Filament program.

5.1 Compiler Performance
Figure 8 summarizes the performance of Lilac’s compiler.
Compilation is dominated by the type checking step which



generates and discharges SMT queries. Most designs take
less than a second to type-check.

6 Latency-Abstract Interfaces in the Wild
We empirically justify our claim that LA interfaces can be
used to capture interfaces for modules generated by existing
tools.

6.1 Vivado IP Core Generators
Vivado’s IP core generators provide encrypted, opaque im-
plementations optimized for specific AMD FPGAs [18]. To
study Lilac’s efficacy at capturing LA interfaces, we study
three IP core generators provided by Vivado.

Multiplier. Like Shift (Figure 6), themultiplier core gen-
erator takes an explicit input parameter to specify the out-
put latency. Lilac’s LA interfaces capture this well:
comp Mult<G:1>[#W, #L](a: [G, G+1] #W,
b: [G, G+1] #W) -> (o: [G+#L, G+#L+1] #W)

Divider. The divider generator [16] provides several pa-
rameters to control the generated modules’ timing behavior
(Figure 9). It allows the user to select between microarchi-
tectures based on precision and performance requirements:
LutMult (Figure 9a) is recommended for bitwidths less

than 12, is fully pipelined, and has an eight-cycle latency.
Radix-2 (Figure 9b), recommended for bitwidths less than
16, has an input parameter (#II) which controls the pipelin-
ing for the module and can be set to values greater than
one to reduce resource usage. Based on other input param-
eters, such as whether a fractional vs. integer remainder is
required, it selects a particular formula to compute the mod-
ule’s latency (captured with output parameter #L). Since the
signature specifies the exact formula used, the parent mod-
ule can reason about the implementation’s concrete latency.
Finally, High-radix (Figure 9c) should be used for bitwidths
greater than 16. The user guide provides a table that gives
the implementation’s exact latency based on the bitwidths
of the divisor and the dividend; there is no closed form for-
mula to compute it. The LA interface simply abstracts the
latency using an output parameter.
The complexity of the divider implementation makes it

challenging to integrate into existing designs. Older versions
[14] only provided LS interfaces for integration but more re-
cent versions [16] have added the ability to wrap the gen-
erated modules in an LI AXI interface. This is a routine ex-
ample of the convenience use of LI interfaces: the dividers’
timing behavior is extremely complicated to reason about
and therefore uses an LI interface instead.
With Lilac, programmers avoid this unnecessary overhead

by using an LA interface. Figure 9d demonstrates this ap-
proach: it provides a wrapper module that instantiates dif-
ferent divider implementations based on the input bitwidth

Generator Features

PipelineC [21] in-dep
FloPoCo [6] in-dep, out-dep
XLS [10] in-dep, ii-gt-1
Spiral FFT [25] in-dep, out-dep, ii-gt-1
Aetherling [8] in-dep, out-dep, ii-gt-1, multi

Table 3. Generators integrated with Lilac and features
needed to capture their interfaces. in-dep: input parame-
ters affect timing behaviors, out-dep: output parameters
affect timing behaviors, ii-gt-1: parameter-dependent
pipelining, and multi: requires multi-cycle intervals.

and sets the appropriate output parameter values. In addi-
tion to demonstrating that LA interfaces can provide a uni-
form interface for the different divider implementations, this
wrapper also encapsulates the documentation’s guidance.

FFT generator. Vivado’s FFT generator [15], similar to
High-radix, defines a table that uses the FPGA target and
input parameter values to determine the module’s latency
and provides an option to generate an AXI wrapper. The
LA interface to wrap this generator would look similar to
Figure 9c.

6.2 LA Interfaces for Generators
Table 3 summarizes existing generators and the Lilac fea-
tures needed to capture their interfaces.

• Input parameter dependent timing (in-dep). Sim-
ilar to Vivado’s multiplier core generator, PipelineC
allows user to specify the exact latency they want us-
ing an input parameter.

• Output parameter dependent timing (out-dep).
FloPoCo uses both input parameters and high-level
optimization goals to decide the timing behaviors of
a module. Similar to the High-Radix divider, such
modules need Lilac’s output parameters to capture
their design-time abstract timing behaviors.

• Parameter dependent pipelining (ii-gt-1). XLS
can generate modules that are partially pipelined, i.e.,
have an initiation interval of greater than one. The
pipelining can depend on input parameters (similar to
Radix-2) or be completely abstract, requiring output
parameters and Lilac’s capability to capture parameter-
dependent event delays.

• Multi-cycle interval (multi). Aetherling generates
modules where the user must hold the input signal
stable for more than one cycle. Capturing such inter-
faces requires Lilac’s ability to describe multi-cycle
availability intervals.
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comp LutMult<G:1>[#W](
n: [G, G+1] #W,
d: [G, G+1] #W

) -> (
q: [G+8, G+9] #W

)

(a) LutMult architecture,
latency-sensitive.

comp Rad2<G:II>[#W,#II,#Fr](
n: [G, G+1] #W, d: [G, G+1] #W

) -> (q: [G+#L, G+#L+1] #W) with {
some #L } where #II < 9, #II%2,
#Fr & #II > 1 ? L == #W+5

: #Fr & #II == 1 ? L == #W+4 ..

(b) Radix-2 architecture, input parame-
ter dependent timing.

comp HighRad<G:#L>[#W](
n: [G, G+1] #W,
d: [G, G+1] #W

) -> (
q: [G+L, G+L+1] #W

) with { some #L; }

(c) High-radix architec-
ture, latency-abstract.

if #W<12 { D := new LutMult[..];
#L := 8; #II := 1 }

else if #W<16 { D := new Rad2[..];
#L := D::L; #II := D::II; }

else { D := new HighRad[..];
#L := D::L; #II := D::L; }}

(d) Selecting dividers based on input
bitwidth.

Figure 9. Interfaces for dividers produced by Vivado’s IP Core. The wrapper code provides a uniform selects the implemen-
tation based on input bitwidth and provides a stable interface to integrate any divider.

Lilac allows integration of external Verilog modules by
defining external components which provide a Lilac signa-
ture as well as a path to the Verilog file that contains the im-
plementation. During compilation, the Lilac compiler links-
in the implementation of the module with the rest of the
design.

7 Gaussian Blur Pyramid
Gaussian blur pyramid is multi-scale image processing al-
gorithm commonly used in tasks such as object detection.
We use GBP to compare LA and LI interfaces. We imple-
ment two versions that use convolution modules generated
by Aetherling [8]: one uses Lilac and LA interfaces; the sec-
ond uses Verilog and LI interfaces. We qualitatively evalu-
ate both interfaces for their ability to effectively encapsulate
the generated modules and report on the resource and per-
formance overhead incurred by LI implementation.

7.1 Implementation
The algorithm proceeds by repeatedly applying Gaussian
blur by convolving the image with a filter, downsampling
the resulting image, and repeating this to construct differ-
ent levels. Once all levels are created, the algorithm upsam-
ples the images, blurs them to remove aliasing artifacts, and
blends them between level𝑁−1 and 𝑁 by taking a weighted
average between the two, continuing until it has recovered
the original image dimensions. Our GBP implementations
unroll this dataflow graph and instantiate modules to per-
form the blurring, blending, and up- and downsampling.

Convolution interface. Weuse Aetherling [8], a DSL for
generating stream processing programs, to generate 4 × 4
convolution implementations and vary the number of mul-
tipliers used to express area–performance trade-offs. We de-
sign a Lilac-based LA interface (Figure 10a) and a Verilog-
based LI interface (Figure 10b) and analyze how they cap-
ture the timing behavior of the generated modules.

Number of inputs. First, upon varying the number of
multipliers, Aetherling changes the size of the input port to
accept 𝑁 elements at a time, where 𝑁 is a factor of 16. Lilac
defines an output parameter to express this tool-dependent

comp AethConv[#W]<G:#II>( // 4x4 conv, gauss filter
valid_i: interface['G],
in[#N]: ['G, 'G+#H] #W // Num. inputs & hold time

) -> (out[#N]: ['G+#L, 'G+#L+1]) with {
some #H where #H > 0; // Num. cycles to hold inputs
some #N where 16 % #N == 0, #N > 0; // Chunk size
some #L, #II where #L > 0, #II >= #H }

(a) Latency-abstract interface for convolution in Lilac.

module AethConv #(parameter W=32, N=16, L=6, II=1, H=1)(
input logic val_i, input logic rdy_i, // input intf
input logic [N-1:0][W-1:0] in,
output logic val_o, output logic rdy_o, // output intf
output logic [N-1:0][W-1:0] out);

(b) Latency-insensitive interface for convolution in Verilog.

Figure 10. Interfaces for the Aetherling-generated 4×4 con-
volution module. The parameter 𝑁 is used by the implemen-
tation to describe howmany of the 16 required inputs it will
accept in a cycle and partially streams some outputs.

choice. One the other hand, the LI interface defines an in-
put parameter that must be correctly threaded through the
hierarchy; if the user gets it wrong, the implementationmay
silently ignore the inputs.

Timing behaviors. The LA interface defines three out-
put parameters to capture themodule’s timing behavior.The
latency (#L) and initiation interval (#II) have correspond-
ing signals in the LI interface, namely an output valid signal
(val_o) and a ready-in (rdy_i) signal. Aetherling’s partially-
pipelined modules use multipliers that perform computa-
tions over multiple cycles and require the module to hold
the input signal stable for multiple cycles. The third param-
eter, #H, captures this. The LI interface lacks an explicit sig-
nal to capture this information: it assumes that data transfer
occurs when ready and valid are asserted together. Instead,
we plumb the #H parameter through the hierarchy and use
it to latch the input value for the required number of cycles.

Parameter pollution. The LI design suffers from param-
eter pollution: the top-level GBP module, which uses three
separate blur modules, must pass four parameters to each,



1 comp Ser[#W, #N, #B, #C, #H]<G: #C*(#N-1)+#H>(
2 en: interface[G], in[N*B]: [G, G+#H] W
3 ) -> (o[#N][#B]: [G+#C*#i, G+#C*#i+#H] W) {
4 for #i in 0..#N { for #j in 0..#B {
5 let #CurIdx = #B*#i+#j;
6 d := new Reg[#W]<G, G+C*#i+#H>(in{#CurIdx});
7 o{i}{j} = d.out; }}}

Figure 11. Parameterized, pipelined serializer in Lilac. The
interface specifies how to take 𝑁 × 𝐵 elements of an array
and chunk them into a stream of 𝑁 element bundles and
can control gap between consecutive bundles (𝐶) and the
number of cycles a bundle is available (𝐻).

1 case (st) // send state machine
2 IDLE: if (val_i) nxt_st = PROC;
3 PROC: cv_val_i = 1; if (cv_rdy_i) nxt_idx = idx+1;
4 BLOCKED: if (rdy_o) nxt_st = IDLE;
5 assign conv_in = in[N*idx+:N];
6 case (st) // recv state machine
7 IDLE: if (val_i) nxt_st = PROC;
8 PROC: cv_rdy_o = 1; if (cv_val_o) nxt_idx = idx+1;
9 BLOCKED: if (rdy_o) nxt_st = IDLE;
10 assign out[N*idx+:N] = conv_out;

Figure 12. State machines for pipelined execution of
Aetherling-generated convolution in the LI implementation.

resulting in 12 extra parameters flowing through the design.
For larger GBPs, this quickly becomes infeasible.

LA blur implementation. Different levels of the GBP al-
gorithm apply blurs of different sizes. For both implementa-
tions, we provide a parameterized blur module that takes
an image of size 𝐼 × 𝐼 and repeatedly calls the Aetherling
generated convolution module to process it. For the LA im-
plementation, this is accomplished using a serializer module
(Figure 11) which takes 𝐼2 elements from the image and pro-
vides 𝑁 inputs to the convolution module (where 𝑁 is the
output parameter provided by the Aetherling module). The
serializer interface (lines 1–3) provides control over when
bundles are produced, if there are gaps between them, and
how long they are valid for. However, the module imple-
mentation (lines 4–7) simply instantiates a register for each
element and forwards its output; Lilac’s type system ensures
that the complex reasoning about parameter-dependent bun-
dle availability is correctly handled.

LI blur implementation. TheLI blur implementation uses
two statemachines (Figure 12) to enable pipelined execution
of the convolution module. The send state machine (lines
1–5) repeatedly extracts and sends an 𝑁-sized chunk of data
to the Aetherling module; the cv_rdy_i indicates when the
convolution is ready to accept the inputs. The recv state
machine (lines 6–10) waits for the output (cv_val_o) and
stores it in the right location in the output image.

Design (N) LUTs Registers Freq. (MHz)

Lilac / RV (1) 1824 / 2093 2532 / 3254 258 / 236
Lilac / RV (2) 1762 / 2062 2464 / 3165 284 / 219
Lilac / RV (4) 1627 / 1983 2373 / 3129 270 / 306
Lilac / RV (8) 1227 / 2146 1733 / 3058 223 / 231
Lilac / RV (16) 1311 / 2099 1688 / 3244 211 / 183

Figure 13. Resource usage and maximum frequency of GBP
implementations for different convolutions configurations.

Pyramid implementation. For the LA implementation,
the various uses of the Blur module require pipeline balanc-
ing. Lilac’s type system ensures that we correctly delay and
use the signals when passing them to subsequent stages:
Blur0 := new BlurAbs[8]; Blur0 := new Blur[4];
level0 := Blur0<'G>(input);
down := new Down<G+Blur0::#L>(level0.out);
level1 := Blur1<'G+#Blur0::#L>(down.out); ...
#L := Blur0::#L + Blur1::#L + BlurUp::#L + Blend::#L;
// II is dictated by slowest blur.
#II := Max[Blur0::#II, Blur1::#II, BlurUp::#II]::#Out;

TheLI implementation uses a serial statemachine to execute
each blur module through a ready–valid interface and itself
provides a ready–valid interface.

7.2 Cost of Latency Insensitivity
Figure 13 summarizes our results: in general, LI implemen-
tations of the GBP take more resources to achieve the same
maximum frequencies. We implement five design points for
both the Lilac and the latency-insensitive interface by syn-
thesizing Aetherling modules with different values for pa-
rameter 𝑁, which affects the latency and the throughput of
the design. Each design is synthesized using Vivado v2023.2
with a target clock period of 3ns and input-output delays of
0.1ns. The reported frequency is computed by subtracting
the worst negative slack from the target and we take geo-
metric means when reporting summary statistics.

Performance analysis. On average, the LI designs achieve
6.8%worse frequencies, and use 26.2%more LUTs and 33.0%
more registers compared to the Lilac implementation. As ex-
pected, the resource usage of the LI designs remains roughly
constant across the various design points. However, for the
LA implementations, the resource usage goes down as we
increase the value of 𝑁: Lilac-1 uses 22.2% fewer registers
than RV-1 while Lilac-16 uses 48% fewer registers. This is
because the serialization logic is a primary cost of the LA im-
plementation and, as the convolutionmodule provides more
parallelism, it needs less serialization logic.
The trend illustrates an important trade-off: LI interfaces

requires a large upfront resource cost to implement the hand-
shaking FSM; however, this cost remains constant regard-
less of the internal logic of the module. LA interface, on the
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other hand, impose a parameter-dependent cost because of
their reliance on compile-time code-generation. This points
of a design paradigm where designers connect smaller com-
ponents using LA interfaces and, once they have a big enough
“island” of LA modules, wrap them using an LI interface.3

Design analysis. For the LI designs, the state machine
logic within the blur modules is the critical path; for the
Lilac implementation, it is the serializer implementation due
to high fanout. The resource overheads in the LI modules
comes from the extra state machines and are amortized as
the size of the module increases implying that designers
should prefer using LA interfaces to build large components
which can be wrapped using LI interfaces.

8 Related Work
Parameters in HDLs. Traditional HDLs, like Verilog and

VHDL, support parameterizing designs using input param-
eters and metaprogramming constructs. They also provide
mechanisms such as defparam to assign parameter values
anywhere in a design’s hierarchy; however, such constructs
break encapsulation and are discouraged from use due to
poor tool support [17, 19]. Output parameters capture in-
verted parameter flow, provide strong encapsulation, and
work with Lilac’s type system to ensure correct usage. Em-
beddedHDLs [2, 3, 20, 23] do not use parameters in the tradi-
tional sense: they rely on the host software language to con-
struct circuits and combine them. Because of this, eHDLs
can easily implement output parameters. However, unlike
Lilac, they do not capture the influence of parameters on tim-
ing behaviors and therefore make LA interfaces challenging
to use correctly.

Safe HDLs. Traditional HDLs guarantee datatype safety:
they ensure that the bits on every wire correspond to se-
mantically meaningful data. Safe HDLs provide orthogonal
guarantees about how circuit elements are used. Latency-
counting HDLs [2, 13, 32, 33] track the latencies of signals
and ensure that pipelines are correctly balanced (latency safety)
but cannot reason about partially-pipelined modules. Fila-
ment [28] allows designs to be partially pipelined and rea-
sons about how resources such as wires, registers, and mod-
ules are reused over time, either explicitly or through pipelin-
ing, and statically guarantees the absence of resource reuse
bugs (resource safety). By enforcing both latency safety and
resource safety, Filament is the first language to eliminate all
structural hazards at compile time. Anvil [35] is a channel-
based HDL that adapts Filament’s abstractions of events and

3This mirrors the concept of globally-asynchronous, locally-synchronous
design where large islands of synchronously clocked modules are con-
nected using asychronous clock-domain crossings.

availability intervals and adds support for LI interfaces us-
ing synchronization signals. However, Anvil does not sup-
port explicit resource reuse, does not address the interac-
tion between compile-time parameters and interface behav-
ior, and does not aim to express LA interfaces. Lilac is the
first language to statically provide both latency safety and
resource safety for parameterized designs directly support
LA interfaces.

Pre-elaboration parameter checking. Bluespec [29] rea-
sons about parameter values at compile-time using provisos,
which are similar to Lilac’s where clauses. However, Blue-
spec does not capture modules’ timing behaviors and thus
cannot reason about the impact parameters have on them.

Verification systems. Formal verification tools for hard-
ware design [4, 24, 34] can reason about general temporal
properties but generally require whole program proofs and
cannot directly handle parameterized designs. Lilac, in con-
trast, uses a compositional type system to guarantee the ab-
sence structural hazards and resource-reuse violations and
reasons symbolically about parameterized designs.

Hardware generators. Core generators [6, 18, 25], high-
level synthesis [30, 36], and accelerator design languages [8,
10, 11, 22, 27] operate with higher-level, computational ab-
stractions and do not expose timing concerns to the user. In
contrast, Lilac is an HDL that directly expresses and reasons
about timing behaviors of low-level circuit descriptions.

9 Future Work
Latency-abstract (LA) interfaces are a design abstraction that
provide the flexibility of latency-insensitive (LI) interfaces
as well as the efficiency of latency-sensitive interfaces.They
do not replace LI interfaces: a module with input-dependent
timing behaviors, such as a variable-latency divider, must
use an LI interface. Similarly, there are cases where even
though LA interfaces could work, an LI interface might be
a better choice because of the design’s performance objec-
tives. These trade-offs imply the need for new HDLs that
unify LI and LA abstractions and allow designers to seam-
lessly move between the two which we see as a fruitful area
for future work.

10 Conclusion
Acombination of generators, domain-specific languages, and
HDLs allows modern hardware designs to bemalleable and
adapt to changes in performance goals and implementation
strategies. Latency-abstract interfaces, coupled with safe ab-
stractions of Lilac, allow designers to build such malleable
designs without having to pick between performance, com-
position, and correctness.
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