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Abstract—While recent cryptographic techniques enable cooperative
multi-party client-server computations under mutual distrust, they also
introduce an efficiency tradeoff. Hosting all of the computation from
the different parties involved on one set of servers requires everyone to
agree on which servers are trustworthy. On the other hand, keeping the
computations truly distributed introduces significant delays because of
the inherently latency-sensitive nature of the protocols involved. In this
paper, we explore the architectural impact of a possible middle path
to this problem: resource-poor but physically secure devices interacting
with significant (but not mutually trusted) compute and storage resources.
The idea is that a small and well-protected “Embassy” can serve as a
plot of sovereign soil in an otherwise untrusted environment. Building
on techniques from multiparty computation (MPC) we show how such
an architecture, even when extremely limited in size, can leverage local
network capabilities and asymmetries in cryptographic operations to
perform more efficient interactive secure computations. Even with a
client-side device 5× slower, we show that common MPC applications can
still be accelerated by 3× on average. Moreover, we explore the potential
for architectural changes to further support multi-party evaluation
through the addition of dedicated evaluator hardware further improving
performance 1.52×.

I. INTRODUCTION

Through advanced cryptographic techniques, it is now possible to
perform shared computations without ever fully sharing the data. For
example, a class of cryptographic techniques referred to as multiparty
computation (MPC) establishes secure computation protocols between
multiple non-colluding parties that allow for functions to be iteratively
computed on private inputs without revealing anything beyond the
result to either party. As long as we trust those parties do not share
out-of-band information with one another, these techniques allow
for a mutual computation to be performed (for example a query
to a database) without either side learning what the other is doing
(such as keeping the query secret from the database and visa versa).
Unfortunately, these protocols usually require both parties to be
active participants in the computation to some degree. Because the
computations are typically arranged as long and unbroken chains of
cryptographic operations, involving multiple parties typically means
a lot of waiting around for the other side to finish up their work and
pass it back to you.

One way to deal with this is to host multiple parties on a trusted
third-party platform. Co-locating the computation minimizes the time
wasted transmitting parts of the computation back and forth between
all parties. Of course, if you had a fully trusted third party they
could just do the computation for all parties involved – no need for
cryptography! However, when we “trust a server”, we are trusting
not only the computational and storage resources it hosts but also

the physical and legal environments under which it operates. These
aspects are hard to attest to remotely and only compound when
multiple nation-states are involved. In reality, these cryptographic
approaches are typically the most useful when the data involved is
sensitive enough that we prefer to trust no one with all of the data.
So, what can we do?

That introduces the new problem of where to find computational
resources to host multiple parties that both parties will trust. The last
decade has seen significant advances in making trusting third-party
remote hardware a more reasonable choice. For example, Flickr [44]
introduced a clever scheme for remote attestation built on the Trusted
Platform Module (TPM) architecture which allowed the loaded system
binary to be non-bypassably fingerprinted. More current approaches
build on top of the capabilities of trusted execution environments
(TEE) such as Intel SGX [20] to create similar “bubbles” of trust.
While these and other approaches provide significant protections,
the threat models one can address with ISA-level changes alone are
constrained and the limits of sharing resources with an untrusted host
opens up many potential side-channel attacks.

The question we attempt to answer in this paper is if and when
it is possible to use a small island of physical security located
in an otherwise very untrusted environment, to enable a broader
set of physically secure computation. Moreover, we explore new
architectures and machine organizations that enable such an approach
to operate with higher efficiency and better performance as compared
to remote computation.

Specifically, we propose an asymmetric approach to multi-party
architecture with the co-location of a small physically-hardened
compute element (under the control of one party) with a much
larger and robust server-class system (under the control of the other).
The hardened device can be physically smaller with fewer compute
resources. Due in part to its small size, the small compute element
can be hardened against even incredibly advanced attacks to a high
degree. The small device can even be physically shipped between
the guest, host, and back again as needed for initialization and
decommissioning. At a high level, one can think of this idea as
setting up an “Embassy” that serves as an island of sovereign soil
in a foreign land. Just like traditional embassies, this arrangement
allows for higher bandwidth and lower latency interaction facilitating
joint activities even under mutual distrust. The code that lives on the
device can serve to orchestrate and even participate in trustworthy
computations in the server on behalf of the guest. Physically shipping
the device adds significant setup overhead. However, there are many



privacy-focused applications where this one-time cost is tolerable. For
instance, in hospitals or research centers, new and sensitive data are
being generated constantly. The more this device is used, the more
amortized the setup cost becomes.

As a first demonstration of the concept, we identify a class of
cryptographic computing approaches that are inherently asymmetric
in their needs. Building on techniques from homomorphic encryption
and multiparty computation, we show how our proposed system can
leverage the high bandwidth and low latency network fabric available
locally to perform more efficient interactive secure computations, even
when the computational abilities of these physically-smaller devices
are severely limited. Specifically, we examine two important privacy-
preserving applications, secure neural network inference based on
Yao’s Garbled Circuit (GC) [70] and private DNA matching based
on Goldreich-Micali-Wigderson (GMW) [27]. In these scenarios, the
Embassy (our proposed device) acts as a trusted (non-colluding)
proxy for the client to perform Multi-Party Computation (MPC) with
a co-located untrusted server. We show that the improvements in
connectivity possible from using only systems connected by local
networks more than compensate for the smaller compute resources
available to this new class of device, and that with some simple
architectural changes this gap can be extended even further. We
summarize our contributions as follows:

• We propose “Hardware Embassies”, a new class of devices that
enable more efficient MPC by providing untrusted server co-
located tamper-proof trusted hardware.

• We show how important cryptographic methods can be mapped
to Hardware Embassies and, for the first time, quantitatively
explore the ways in which we can take advantage of the network
performance and asymmetric compute requirements of these
protocols.

• Building on our experience with the above, we propose and
evaluate a microarchitecture specialized in the cryptographic
operations at the heart of common MPC computations.

• We show experimentally, through a mix of in-datacenter network
experimentation, detailed simulation, and Verilog design, that
the resulting system realizes a 4.56× improvement over more
distributed computation.

II. SUPPORTING MPC

Multi-Party Computation (MPC) is a class of cryptographic
techniques that allow for the evaluation of functions without any
of the participating parties learning about the inputs used in the
computation [40]. The most advanced techniques support any com-
putation expressible as a Boolean circuit, everything from neural
network evaluations to bioinformatics applications, without sharing
the underlying data.

A common form of MPC in practice is two-party computation
(2PC) [30], which can be used as a way to securely outsource private
computations to untrusted cloud machines. Yao’s Garbled Circuit
(GC) and Goldreich-Micali-Wigderson (GMW) are examples of 2PC
protocols which have been used for applications such as privacy-
preserving machine learning [58], secure genomic computations [36],
and secure data search [23]. Recent algorithmic improvements to 2PC
protocols, especially the transition from public-key cryptography to
symmetric cryptography, have reduced the computational overhead
by more than an order of magnitude but communication bottlenecks
are much harder to overcome. For a single inference operation in a
simple MNIST-based neural network, a strict GC approach would
require a network transfer volume of 791MB [59]. While we will

discuss some algorithmic ways others have found to help mitigate
this problem, it remains a serious issue.

Also, the literature on MPC is largely dominated by work that
optimistically assumes direct high speed and low latency connection
between communicating parties. The high communication cost of
GC becomes even more burdensome for the common case where a
client and a server are located in different regions and therefore are
using a WAN connection. There are different possible LAN and WAN
assumptions one might make, but typically settings of WAN have
430× longer latency and 113× smaller bandwidth than the reported
LAN configuration for AWS [46].

We propose the use of a low-resource device under the direct
control of an entity cooperating with the co-located server that takes
advantage of the high-speed LAN performance. This is made possible
by physically co-locating this device with the cooperating agents
while taking advantage of the inherent asymmetry of client and
server computational requirements for most common cryptographic
techniques. For example, as shown in Table I, the evaluation phase in
GC (typically performed at the client-side) has 2× smaller compute
requirements [72] than the garbling phase (typically performed on the
server). This difference in compute load between the client and server
becomes more asymmetric for the hybrid protocols we consider in
this work.

Unfortunately, co-location inherently creates a trade off between
performance and security as one party now has physical access to
both sides of the computation. In situations with mutual trust between
all parties, this does not pose a security challenge, however, under
these assumptions it is often unnecessary to utilize a co-located
device. When the embassy device is under the physical control of
an untrusted entity then that entity could potentially break the non-
collusion assumptions that MPC and other cryptographic protocols
rely on. It becomes necessary to ensure the embassy is secure against
physical attacks.

While physical security is not the focus of this work, NIST provides
a standard for the security of cryptographic hardware in untrusted
environments called FIPS 140. The latest versions, 140-2 [47] and
140-3 [48], categorize hardware into four categories. For FIPS 140-3
levels 1 and 2 have no physical security requirements, and so such
devices would be unfit for an embassy device. Levels 3 and 4 require
strong enclosures with tamper detection that causes either an automatic
zeroisation or a module shutdown. While both level 3 and 4 devices
are sufficient to implement Embassy, these tamper detection techniques
introduce overhead proportional to the original chip area. Also, there
is rarely a single technique that is able to provide catch-all tamper
detection [53]. For instance, silicon light sensors have been used to
detect active optical attacks [52], but cannot detect other attacks. Due
to this, most FIPS 140 level 3 or 4 devices tend to be small, such as
USB drives, security cards, and hardware security modules. While
these devices are too small to support the computation necessary for
an Embassy, the techniques used can be expanded to cover a larger
device.

Using a small computing device for the Embassy gives us the
following advantages: (i) better defence against physical tampering
because of a smaller attack surface; (ii) better protection if the
server gets compromised, given the Embassy has a different hardware
configuration and security guarantees (an attack on the server does not
automatically compromise the Embassy); and (iii) this setup relaxes
the need for the client to be online because it allows precomputations
that can reduce ad-hoc runtime.

In this paper, we study two different applications to demonstrate the
practicality of our solution. The first application is secure NN inference



Properties Garbled Circuit GMW
XOR Gate free free
AND Gate
- Setup computation
- Setup communication [bits]
- Online computation
- Online communication [bits]

-
-

C: 2×AES; S: 4×AES
C from S: 2×κ

Client/Server: 6×AES
C to S and C from S: 2×κ

negligible
C to S and C from S: 4

wire storage [bits] κ 1

TABLE I: Comparison between Garbled Circuit and GMW. The
security level κ is usually fixed at 128 bits. XOR gates require no
communications for both protocols and can be computed locally.
For each AND gate, the garbled circuit computes more AES on the
server-side (2×) while work is evenly split in GMW. In general,
GMW requires more AES computations while GC consumes a greater
memory footprint. Both protocols have the same communication
overhead.

using a hybrid protocol (HE + GC) [37]. The second application is
secure DNA matching using a private set intersection with the GMW
protocol [23]. While we use these two specific MPC approaches to
evaluate this approach, there is nothing application-specific about the
architecture we propose.

For the two applications considered in this work, we follow the
threat model of [23], [37]. In secure neural network inference, we
assume that the network model is available as plain text in the
server, similar to past work [24], [37], [42]. We assume that the
cryptographic protocols which we make use of in this work are
correct and that the adversary is computationally-bound, i.e. brute-
force attacks are infeasible. We assume that the Embassy is resistant
to physical tampering and that any attempt to pry open the device
results in irretrievably corrupting the data in the device as per FIPS
140-3 level 3 and 4 devices.

III. HARDWARE EMBASSY APPROACH

The general protocol governing the use of an Embassy consists of
three main phases.

I. Key Setup. Unique among other approaches, a client can begin
with direct physical control of the device to be embedded in the co-
located server. The client generates a random symmetric encryption
key which is then stored in the Embassy. This key can be used to
securely communicate back with the client from the co-located server.

II. Program Select and Compute. After the Embassy is installed
in the co-located server, the client can send a request to the device
consisting of an input and a program for the computation. This is
done through a secure channel using the key that was generated by
the client. To initiate the compute operation, the Embassy sends a
request to an untrusted server in the system. For example, to perform
GC, the untrusted server sends the garbled tables of the program to
the Embassy and performs OT for input wires. Note that the garbled
tables can be precomputed offline for certain programs. The Embassy
can then evaluate the garbled tables and obtain the result of the
computation.

III. Result Retrieval. As results are generated, the Embassy can
send them to the client. Alternatively, the client can batch a request
of computations and query the results stored in the Embassy. Results
are sent back to the client using a secure channel as the data leaves
the co-located server.

A. Embassy Design

In designing an Embassy, we consider a spectrum of specifications
with the highest performance being a server-class machine. Given
the highly-advanced threat model we are considering, it would be
advantageous to use a device that has small enough dimensions to

Client

Untrusted Servers

① ②

③⑤ ④

Secure Channel

Embassy
Hardware

Setup Ship Embassy

High-Speed Connection

Fig. 1: Protocol Flow. A trust setup phase is first performed with a
client machine before being sent to the co-located server. The client
machine sends inputs and receives results from the Embassy through
a secure channel. The actual secure computation happens inside the
co-located server between the Embassy and an untrusted server.

be physically protected using the most aggressive tamper-resistant
methods known [35]. At the lowest end that may be a simple
USB-sized package similar to those used for edge neural network
acceleration [9], [12]. However, we are interested in using a standalone
device that does not need a host, for security and performance reasons.
The closest commercial device on the market is Intel’s compute stick
which was first released in 2015 [11]. These devices have USB ports
that can be used to connect to either a USB-based NIC or a switch
that incorporates USB connectivity, however more complicated wire
connectivity and better networking capabilities could be possible.

One of the main challenges in using such small devices as an
Embassy is the lower performance they provide compared to server-
class machines. However, as we will show later, with some creativity
this level of device can still provide sufficient compute for secure
computation due to the fact that most of these protocols have an
inherent compute asymmetry – most of the compute-intensive actions
can be carried out on a powerful but untrusted server.

B. Co-locating with Untrusted Servers

Here we present one possible design for a co-located server that
supports Embassy. We use the concept of a disaggregated co-located
server that allows different computing devices or accelerators to
be separated and individually addressed instead of relying on host
machines [29]. A sample co-located server configuration with Embassy
is shown in Figure 2. This design presents advantages in terms of
cost, performance, and security. An Embassy without a host machine
yields significant cost savings and lower maintenance costs. In terms
of performance, it has fewer network and software layers to traverse
since it does not communicate through a host machine. Using a
compute-stick class device also ensures we are not over-provisioning
for workloads that work on these devices. As for security, the potential
attack surface is reduced since data does not need to pass through
host machines, thus making side-channel attacks harder.

Dedicated and physically-separated machines for clients might be
less cost-efficient than co-located servers. Nevertheless, recent attacks
on virtualized environments [39], [41], [64] have made it clear that it
is sometimes better to use separate machines if security is important
since they can be more easily isolated in physically secure spaces. We
also draw inspiration from the rise of baremetal servers which allow
companies to have physically separate machines in the co-located
server instead of using virtualized environments.

While we have shown that there are advantages in introducing
third-party hardware such as Embassy into co-located servers, an
understandable concern from server operators is if the device itself
is malicious. While this has been an ongoing trend [18], here we
discuss further potential safeguards to protect servers from malicious
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Fig. 2: Model of Embassies with Co-located Servers. Embassies are
host-less network-connected computing devices. Each one can connect
to a server on other racks through Top of Rack (ToR) switches or
through other Embassies.

Embassies. One protection is to add a firewall using a switch exploiting
software-defined networking to provide software-controlled protection
of the broader co-located servers from potentially malicious traffic
produced by errant Embassies. Another safeguard would be for the
provider to release an open-source reference design for the Embassy
with auditing by developers and the potential to perform attestation
using Physical Unclonable Function (PUF) or Zero Knowledge Proof
(ZKP) so that the provider can confirm that the Embassy can be
trusted. The OpenTitan project shows a potential proof of concept in
the related space of providing an open-source silicon root-of trust [43].

IV. APPLICATIONS

While Embassy can be used for a wide range of applications, in
this paper we investigate two representative applications commonly
outsourced to third-party co-located servers that highly demand privacy
guarantees: neural network inference and DNA matching. Below we
describe how we can adapt these applications to leverage Embassy.

A. Embassies in Secure Computation

Embassy for Secure NN Inference: The protocol followed in this
work is broadly similar to the hybrid protocol used in Gazelle [37],
as shown in Figure 3. After securely receiving the input data from the
client, Embassy encrypts the input data sent by the client (e.g., image)
using packed additively HE (PAHE). The linear layers (convolution
and fully-connected) are then processed using PAHE operations. Non-
linear layers such as ReLU and MaxPool are performed using a
garbled circuit. The ReLU circuit that is evaluated is shown in Figure
4, where s x and s y are shares from the server and c x comes from
the Embassy or client, and p is the prime parameter selected in PAHE.
Conversion from PAHE to GC is done using secret sharing (adding
a blinding random number). These steps are repeated in the series
of linear/non-linear layers of the neural network until the final result
(prediction) is obtained which is still in an encrypted form. This is
sent back to the Embassy where it is decrypted and sent back to the
client in a secure channel or stored for a later query by the client
device.

Unlike in Gazelle, we assign the untrusted server as the garbler and
the Embassy as the evaluator. In this way, we are taking advantage
of the workload asymmetry that exists between the evaluator (less
work) and garbler (more work). Note that compared to using pure
GC, this hybrid protocol results in reduced online execution time and
communication cost. This means that for cases where we are interested
in similar runtimes, there is a larger margin for the performance
degradation range of the Embassy.
Embassy for Private Set Intersection: By improving an application
using a generic circuit protocol alone (GMW), we demonstrate that

encrypted input
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Client
Embassy

Untrusted
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ReLU/MaxPool using GC/SS
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encrypted result (AHE)
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ReLU/MaxPool using GC/SS
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Fig. 3: Hybrid secure neural network inference flow using Embassy.
This flow is adapted from Gazelle [37] which combines Additive HE
and Garbled Circuits to evaluate linear and non-linear parts of the
neural network, respectively
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Fig. 4: ReLU Gadget Unit to be evaluated in the GC phase of the
Hybrid Secure Neural Network [37]
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Fig. 5: PSI-GMW Flow using Embassy. This is adpated from [50]
that uses GMW to perform pairwise comparison for each bucket of
the hash tables.

similar results can be obtained in the most secure 2PC applications as
GMW can be rapidly adapted to a different program by constructing a
new corresponding circuit. We thus adapt the PSI pairwise-comparison-
circuit using GMW [50] to Embassy. Dessouky et al. proposed a
look-up table circuit protocol [23] that outperforms GMW in PSI, but
since the protocol reduces the communication overhead at the cost
of increased computation, it performs poorly in the LAN network
and is thus not considered. For comparison, we evaluate a dedicated
PSI protocol using Oblivious Transfer [51], one of the fastest PSI
protocols in the literature, on the Embassy. For simplicity, we name
the two protocols PSI-GMW and PSI-OT.

PSI-GMW computes the intersection between two sets by mapping
elements from both parties into hash tables and evaluates a pairwise
comparison circuit between each bucket of the hash tables, as shown
in Figure 5. The complexity of PSI-GMW scales linearly with the
product of the entry bit width and the set size [50]. The process
begins with the client hashing its private data locally (e.g. genomic
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data in a VCF file) and sending that data to the Embassy in the
co-located server. We adopt the same hashing technique in [50] that
maps data to fewer bits, which reduces the one-time communication
overhead over the WAN network and the storage requirement in the
Embassy. The setup phase of GMW is dominated by AES operations
in OT. To balance the computation workload, the server and the client
switch roles in 1-out-of-2 OT after computing multiplication triples
for half of the AND gates [63]. Because of the resource constraints
of the Embassy, we remove this optimization and make Embassy
always play the receiver in OT. Removing role switching also reduces
computation intensity by reducing two base-OT computations to one.
We still keep the two-thread implementation in [50]. Note that it is
possible to improve performance by using more threads in the setup
phase to further take advantage of the fast High-Speed LAN.

The Embassy enables the client to stay online only during the
transfer of the input and output data. The multiplication triples can
be generated as long as the size of the circuit is known. The actual
program (e.g. PSI) does not have to be known in advance. Because
the Embassy can always stay online, the Embassy can precompute
a certain number of multiplication triples (say 230) with the server
when it is idle. After the client makes a request to execute a program,
it needs to query a multiplication triple for each AND gate in the
circuit and uses them directly in the online phase. As a result, the
ad-hoc runtime can be reduced by more than 99% for a set size of
100K. After the set intersection is computed, the intersection results
will be stored in the Embassy in a bitmap format, which can be later
queried by the remote client.

For the PSI-OT flow, the same hashing process is still required.
Instead of evaluating a circuit, both parties perform a random 1-out-
of-N OT for each bucket of the hash tables. As a result, both parties
obtain a randomly generated mask for all of their own table entries.
Then the server sends a randomly permuted set of all of its masks
to the Embassy. The Embassy finally computes the intersection by
comparing the masks, and the results will be stored in the same bitmap
format. The complexity of PSI-OT is independent of the entry bit
width and scales linearly with the set size [51]. However, 1-out-of-N
OT requires more base-OT computations, which can easily become
compute-bound in a fast network.

B. The “Ambassador” Garbled Circuit Evaluator Accelerator

While the algorithmic mappings described above take advantage
of computational asymmetries, if you make the hardware embassy
resource-constrained enough, eventually it begins limiting performance

again. However, after examining the way these devices are exercised
by real code, we observed that much of the work is well-structured
cryptographic operations amenable to hardware acceleration. We
propose that a cryptographic co-processor designed to sit alongside
the main Embassy CPU and perform common MPC operations can
be used to further improve performance or, more usefully, provide
even further computational asymmetry allowing even smaller and
more resource-limited devices to be useful in this context. Figure 6
details the high level architecture of the Ambassador Garbled Circuit
Evaluator module.

The main component of this module is the evaluation unit which
houses 2 AES cores designed to accept one gate per cycle. The garbled
tables, garbler/evaluator input labels, and other necessary data such
as output masks are obtained from the garbler and are stored in their
respective buffer memory. Note that in order to maintain the privacy
of input, the evaluator input labels are obtained from the garbler using
oblivious transfer (OT). Each pair of input labels is processed in the
evaluation unit to obtain the output label which is then sent back to the
label scratchpad memory. It will be used in subsequent gate evaluation
as the evaluator goes through the netlist gates one by one. Each of
the AES core consists of a 10-stage pipeline performing AES-128 on
ECB mode. Therefore it improves throughput but introduces potential
dependency issues when evaluating the gates whose inputs have not
been processed yet. This is the same issue as arises in FASE [32], the
project we extended to evaluate the Ambassador. Note that the main
operations in Evaluation is the opposite of Garbling where the goal
is to use Garbled tables to generate and evaluate a circuit whereas
the goal in Garbling is to produce garbled tables. Because of the
Half-Gates optimization [72] the amount of work needed to be done
by the garbler is 2× more than the evaluator. This explains why our
Evaluator unit only needs 2 AES cores instead of 4 to achieve the
same throughput performance.

V. EVALUATION

With the application mapping and inherent algorithmic asymmetry
described, the most pressing question is how well a compute-restricted
device might actually perform on these MPC applications. Rather
than rely on a simulation of the system, we perform direct system
experimentation with two machines running the full application stack
connected point-to-point. By tuning down the performance of the
compute and network from this base “1:1” system we can explore the
relative impact of network and compute asymmetry on the workload
under evaluation.

A. Methodology

1) Hardware and Software Setup: To simulate the server-Embassy
connection, we use two Equinix c3.small [8] bare metal nodes
connected with a 10 Gbps LAN. Both machines have an Intel Core E-
2278G 3.4 GHz (8C/16T) with 32 GB of memory and a top frequency
of 5 GHz. Both are running Ubuntu 18.04.

We emulate a slower machine for the Embassy by scaling down
from the maximum operating frequency of the client machine. We
achieve this by setting the appropriate max perf pct Intel p-state
parameter that corresponds to the percentage of maximum processor
frequency. The particular machine we used for evaluation can be
tuned from 800 MHz to 5 GHz (6.25× tuning range). Throughout
the evaluation, we make use of 1 GHz (5× slowdown) as our
representative Embassy performance. This roughly corresponds to the
single-core benchmark performance gap between a typical server-class
processor and processor (Intel Celeron N4100) from a commercially-
available compute-stick [3].



Network Description
SNN-MNIST NetC 1-Conv, 2-FC, ReLU activation [59]
SNN-MNIST NetD 2-Conv, 2-FC, ReLU and MaxPool [42]
SNN-CIFAR10 7-Conv, 1-FC, ReLU and MeanPool [42]

TABLE II: Neural Network Architectures for SNN Workloads

PSI-OT 1K

PSI-OT 10K

PSI-OT 100K

PSI-GMW 1K

PSI-GMW 10K

PSI-GMW 100K
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Fig. 7: Communication volume versus total application runtime. The
color-coding indicates the change in input size for each application.

To accurately simulate a wide sweep of network transfer parameters
between Embassy and the server over the LAN connection, we use
the Linux tc tool. With this tool, we can add artificial delays to
simulate latency and throttle bandwidth. We measure the effective
network bandwidth and latency using iperf3 and ping, respectively. The
default network setting between Embassy and server has an average
bandwidth of 9.42 Gbps and an average round trip latency (RTT) of
0.6 ms. We use the available secure neural network implementation
from Gazelle [4] and the private set intersection implementations in
ABY [6] and PSI [7] frameworks. Both applications are written in
C++ and were adapted for our Embassy evaluation.
2) Parameter Selection: We consider two network settings: WAN and
High-Speed LAN representing the baseline operation and the Embassy
operation, respectively. We set the bandwidth/latency configuration
for WAN as 200 Mbps/40 ms [15], [74] and High-Speed LAN as 10
Gbps/0.6 ms, which is typical in datacenters. Note that we refrain
from selecting extreme network speeds to achieve overly optimistic
results although modern datacenters have far more improved network
infrastructure reaching bandwidths of 100 Gbps and 400 Gbps [2].
For both applications, we fix the security parameter κ to 128 bits. For
secure neural network inference, we evaluate the performance overhead
of two groups of neural networks designed for MNIST and CIFAR10,
respectively. The network architectures are described in Table II. For
PSI, we use a 32-bit entry size and fix the number of entries to 100
thousand elements for both client and server, which is a moderate size
in DNA matching applications [38]. We include all one-time transfer,
offline phase, and online phase costs in our timing measurements.
Timing results were averaged over 10 execution iterations.

B. Baseline Embassy Results

Application Communication Cost: Figure 7 shows communication
volume in MB as a function of the runtime for different applications
with various input parameters. We can see that all applications show
larger communication costs as the input size increases but they show
different characteristics indicated by the slopes of their trend lines.
PSI-OT shows little communication and scales well to large input
sizes compared to PSI-GMW and SNN. The slope of PSI-OT is
also steeper than PSI-GMW indicating that it is less sensitive to
communication network improvement. PSI-GMW and SNN have
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Fig. 8: Bandwidth limit analysis. Runtime is normalized to the smallest
runtime of all applications. Latency is fixed at 0.6 ms (High Speed
LAN). The red marker in each line indicates saturation in runtime,
where the change in runtime starts to fall below 2% as bandwidth
improves.

comparable communication that is at least two orders of magnitude
more than PSI-OT, while SNN has the highest runtime. PSI-GMW
and SNN scale poorly in communication and runtime as input size
increases and are thus ideal for Embassy.
Network Bandwidth Limit: Applications can be characterized by
their communication-to-computation ratio which is determined by
their underlying algorithm and protocol. This property can determine
how much performance improvement the application can achieve by
improving network bandwidth, i.e., the larger this ratio the larger
the potential speedup. Figure 8 shows the normalized runtime of the
applications for various bandwidth configurations at a High Speed
LAN latency of 0.6 ms. PSI-GMW is more sensitive to changes
in bandwidth compared to SNN applications below 2 Gbps. Since
SNN applications have slightly greater communication-to-computation
ratios, they saturate at higher bandwidths (indicated by the red markers
in the figure) compared to PSI applications. A key observation is
that most applications do not utilize the full bandwidth improvement
and become compute-bound before reaching the High-Speed LAN
bandwidth. There is no further speedup for SNN-CIFAR10 and SNN-
MNIST NetD after 4000 Mbps. The runtime of PSI-GMW stops
decreasing as early as 2000 Mbps. As we will show later in the
multithreaded experiments, the reason for relatively low saturation is
due to the unoptimized use of threads in the applications. PSI-OT is
more dominanted by public-key cryptography computations in base OT
and thus shows the least benefit from bandwidth improvement. Note
that bandwidth can also be better utilized when we have contention
with multiple Embassies in the system.
Network Latency Sweep: Figure 9 shows the normalized runtime of
the applications for various latency configurations at a High Speed
LAN bandwidth of 10 Gbps. Compared to PSI, SNN applications
are more sensitive to changes in latency, which are characterized by
their greater slopes. This is intuitive because despite Garbled Circuit
being a constant-round protocol, a large number of ReLU layers in
SNN stacks up communication rounds, while data transfers in PSI
can be efficiently batched. The runtimes of all 5 applications scale
linearly with latency and show improvement throughout the entire
latency range.
Embassy Performance: We illustrate application speedup using
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Embassy in Figure 10 as a function of the performance of the
Embassy scaled relative to the server. As discussed in Section V-A,
we use core frequency as our performance scaling metric. A speedup
of 1 (no speedup) indicates that the Embassy and the server have
similar performance and that the speedup is gained from the network
improvement from using an intra-system network. This speedup is
gradually reduced as the Embassy is slowed down because any benefits
from the network are lost from the slower computation. The dotted
line represents the slowdown margin as this is the point where the
speedup from network improvement is exhausted (speedup = 1) from
continued Embassy performance slowdown. Note that since in our
setup we can only test for a slowdown of 6.25×, we are unable to
check the actual slowdown margin for some of the applications.

The slowdown margin of SNN applications is generally higher
compared to PSI applications owing to the larger asymmetry in
computations (more of the compute-intensive portions of the protocol
happen in the untrusted server). For example, for an Embassy that has
a slowdown of 5× we can get a speedup of as much as 2.33× in SNN-
MNIST NetD as opposed to 1.97× in PSI-GMW. Shallower networks
for MNIST have greater speedup at the same slowdown rate. Within
SNN applications, the gap between slowdown margins of the different
network architectures comes from the communication composition of
the workload. Since SNN-MNIST NetC uses a significantly shallower
neural network compared to SNN-MNIST NetD and SNN-CIFAR10,
communication takes a larger chunk of the overall runtime hence we
can get a greater speedup. Note that for PSI-OT there is no speedup
at 5× because it has the least communication-to-computation ratio
among all applications, meaning that Embassy can barely have any
improvement in terms of runtime performance for relatively more
compute-bound applications.
Multithreading to Improve Bandwidth Utilization: The previous
results show the default unoptimized configuration for the applications
with limited thread usage. Since our setup largely alleviates the
communication overhead, most applications become compute-bound,
as shown in the bandwidth limit evaluation. In Figure 11, we illustrate
that thread-level parallelism that takes advantage of the available to
compute resources can improve the bandwidth utilization for those
applications and in turn the performance of Embassy, which is not
possible in the traditional WAN setting [51] with its limited bandwidth.
The underlying GMW protocol can be parallelized evenly by dividing

the multiplication triple generation in the setup phase to each individual
thread [51]. At 5× device slowdown, the speedup grows by 1.96×
by increasing from 2 threads to only 4 threads. As the number of
threads increases from 2 to 8, the speedup increases by 3.42× from
1.97 to 6.73. Note that reducing the significant overhead of server-side
homomorphic encryption in SNN algorithms can achieve a similar
effect in the Embassy setting.
Energy Evaluation: One of the key advantages of using Embassy is
the energy savings from performing secure multi-party computation
locally within a co-located server, because that keeps communication
within the co-located server instead of across a WAN. Figure 12 shows
the estimated energy savings from using Embassy (client-Embassy-
server) instead of baseline direct WAN (client-server) computation.
Energy consumption is computed as a sum of the total network transfer
energy and total computation energy. The network transfer energy
gap is conservatively assumed to be 5× [5]. The computation energy
is computed from a client and server TDP of 95W. Typical energy
savings is around 15×. This is mostly due to the use of lower-energy
local data movement compared to WANs. Note that Embassy still
needs WAN transfers for the client communication but the High-Speed
LAN communication still dominates the transfers. For the PSI-OT
application, it is less affected by Embassy but 8× savings is still
beneficial compared to the WAN setting.

As shown, the power reduction from adding Embassies far out-
weighs the power increase of the Embassies themselves, because
those are more efficient than general-purpose untrusted servers. This
is intuitive since the power consumption is 8× per virtual machine
(VM) in modern datacenters which span from tens of Watts to
hundreds of Watts [60]. Therefore, the additional 6W for an Embassy
is comfortably outweighed by less expensive data movement and
computation reduction on general-purpose servers.

C. Ambassador Evaluator Results

An Embassy implemented only as a compute stick-class processor
is likely to see a significant performance slowdown as compared
to the co-located servers it is connecting to. However, much of the
cryptographic calculation that is performed in the MPC setting is
amenable to hardware acceleration and so we propose to include
such hardware accelerators as part of the Embassy in order to
boost both performance and energy efficiency. Here, we investigate
the performance improvement available for Embassy if we use
dedicated hardware-accelerated implementation of the GC evaluator
module to improve GC operations. Our Verilog implementation of the
Ambassador evaluator is based on the garbler accelerator provided
as part of FASE [32]. We show a comparison of the GC evaluation
performance of the Ambassador Evaluator accelerator compared to a
system without such an accelerator. Since we are interested in using
Embassy for SNN workloads, we focus our evaluation on workloads
with non-linear SNN operations like ReLU.

Table III shows the Ambassador Evaluator’s estimated evaluation
time and speedup compared to the CPU implementation. We imple-
mented the ReLU circuit shown in Fig. 4 in Verilog and obtained
the optimized gate count (shown in Table III) from synthesis using
Synopsys Design Compiler using the TinyGarble Circuit Synthesis
Library [1]. From this gate count, we make use of the similarity
in architecture between our evaluator accelerator and the garbler
accelerator provided by FASE [32] in order to estimate the expected
performance of our evaluator accelerator. We conservatively estimate a
range for a processing rate of 2-5.5 cycles/gate based on the simulation
results of various circuits reported with the FASE garbler accelerator.
We use this cycles/gate to estimate the range of evaluation time and
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the speedup compared to the software Gazelle implementation of the
evaluator. At the FPGA’s 100MHz clock frequency, we calculate
a performance improvement ranging from 1.57x to 4.31x. Note
that even though we demonstrate the advantage of the Ambassador
Evaluator accelerator as implemented on FPGA in this study, an ASIC
implementation could certainly be used and would result in further

improved performance and energy efficiency.

#XOR #Non-XOR #Total Eval Time Speedup
ReLU
Unit 564 189 753 1506 - 4141 (cc)

15.06 - 41.41 (us) 1.57x -4.31x

TABLE III: Ambassador Evaluator Performance compared to Gazelle
Evaluate function on CPU [37] for the ReLU unit in Fig. 4.

Resource Overhead: Our Ambassador Evaluator resource estimation
exploits the FPGA infrastructure provided by the FASE Garbler
implementation [32]. The FASE Garbler was implemented on a
Xilinx Virtex UltraScale VCU108 FPGA while our Evaluator is
implemented on a Xilinx Zynq ZCU104 FPGA with lesser system
resources. Table IV shows the estimated resource utilization with a
clock frequency of 100MHz. As expected, our Ambassador Evaluator
accelerator consumes fewer resources than the FASE garbler as it
only needs two AES cores compared to the garbler’s four.

Total %Util
LUT 42472 18.43

Registers 11886 2.58
BRAM 37.5 12.02

TABLE IV: Resource Utilization

Overall SNN Workload Speedup: In order to estimate the overall
improvement of introducing a dedicated evaluator accelerator into
the Embassy, we profile the SNN applications for the percentage of
execution time spent on non-linear layers versus the total runtime.
Figure 13 shows the percentage of runtime spent on non-linear layers.
It shows that the amount of time spent on the total runtime increases
when the network becomes deeper and when the network increases
in the number of non-linear layers such as ReLU and MaxPool.

We use this profiled non-linear execution time and the improvement
we obtained from the individual ReLU unit running on the Ambassador
Evaluator accelerator to calculate the overall speedup for running the
whole network which we observed to range from 1.19× to 1.52× in a
larger network like CIFAR10. The speedup available is dependent on
the type of network and this setup favors deeper networks with more
and wider non-linear layers like CIFAR10 as compared to MNIST
networks. Note that although it is tempting to think of further speeding
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up the operation by adding support to Embassy for homomorphic
encryption in the linear layers, in the design of Hybrid SNNs, the
HE evaluation is done in the server and not in the client/Embassy,
thus server support, rather than Embassy support, would be required.

VI. RELATED WORK

In considering the viability of our approach in a co-located
server setting, we look for inspiration from two trends in co-located
server infrastructure design. The first is disaggregated datacenter
networks [26], which increase the efficiency and lower the total cost
of ownership (TCO) of datacenters using network-attached host-less
accelerators. For example, Facebook recently rolled out their F16 [14]
datacenter fabric design. The second trend is the adoption of bare
metal cloud services [71], where providers allocate dedicated servers
for customers. Unlike typical virtual machine-based cloud providers
like AWS and Google, doing away with layers of virtualization and
dedicating the use of hardware resources results in performance
improvements. Further, because clients do not have to share the same
physical machines (single tenant), there are fewer potential security
risks from recent cross-VM side-channel attacks [39], [41], [64], [69].
Embassies are host-less network-connected computing devices that are
exclusively used by clients to perform MPC with co-located untrusted
servers.

A. Trusted Hardware

Trusted hardware such as Intel SGX has been used to support
privacy-preserving machine learning [28], [34], [49], [68]. SGX
creates enclaves for isolated execution environments and supports
remote attestation. However, SGX is fundamentally limited because the
trusted execution environment and an untrusted CPU share the same
computing resources resulting in a switching overhead. Furthermore,
it has limited memory resources (90MB), leading to paging overheads
for larger applications [20]. These make these solutions not feasible
for evaluating much larger networks, not to mention recent side-
channel attacks in SGX [69]. To meet demands for larger workloads,
Intel recently released a PCIe interface-based SGX Card with three
SGX-equipped CPUs [19]. This hardware with its discrete processors
would incur significantly more power than our specialized solution
and is a band-aid solution with the same fundamental performance
and security flaws of SGX.

Trusted hardware has also been used to support secure multiparty
computation. Bahmani et al. [16] make use of code running in the
SGX as a trusted third-party and parties which are represented as
SGX enclaves perform function evaluation during the online phase.
Sartakov et al. [61] extend this by adding support for fast inter-
enclave communication. For both works, because of SGX limitations,
evaluated applications are very simple such as summations, unlike the
applications we consider. Demmler et al. [22] used a trusted secure
card in a mobile phone to speed up the generation of multiplication
triples in the offline phase of GMW. Our trusted Embassy is a much

more capable device that participates in the online phase of the
computation. Embassy also physically decouples the computation and
does not share any resources with the host. This reduces the number
of avenues for side-channel attacks, but does require physical security
mechanisms for the Embassy device. Additionally the Embassy device
can be flexible in the amount of compute resources it has, allowing
the device to be designed to fit the workload.

Bugiel et al. [17] proposed a Twin Clouds model which represents
the closest work to our protocol but has many significant differences.
First, they make a strong assumption of non-collusion between the two
cloud machines. This is not the case for our work since the Embassy
is considered a trusted proxy of the client. Second, Twin Clouds’ high
bandwidth channel is not aimed to improve the network overhead
of secure communication but instead, it is used for quick bulk file
transfers. Third, they don’t describe potential hardware implementation
and evaluations.

Eguro et al. [25] proposed FPGA-based secure computation
hardware aimed at emulating homomorphic encryption. Our solution,
on the other hand, involves no host for the trusted device and can be
used to make MPC more efficient.

More recently, Telekine [31] was proposed to mitigate side-channel
attacks when clients use cloud-deployed GPUs with TEEs. HETEE
[73] was designed to manage all compute units in a server rack by
using the PCIe switch fabric to securely allocate accelerators. Unlike
Telekine and HETEE, Embassy only considers the security of one
single type of portable device.

B. Privacy-Preserving NN Inference

CryptoNets [24] is the first work on privacy-preserving neural
network inference we are aware of. It is used as a leveled homomorphic
encryption scheme for evaluating all layer which resulted in significant
performance overhead and lower accuracy from using square activation
functions. DeepSecure [59] used an all garbled circuit approach which
improved the computation efficiency of CryptoNets but in turn had
worse communication overhead. For example, to perform an MNIST-
based inference operation, DeepSecure needs to transfer 791MB per
single inference compared to CryptoNets’s 595MB for a batch size
of 8129. To address this problem, Gazelle [37] proposed a hybrid
protocol composed of HE and MPC for NN inference. In this scheme,
HE is used for linear operations (e.g., matrix-vector multiplication
in convolutional layers) while MPC is used for non-linear operations
(ReLU and max pooling functions). This improved the overall compute
and communication overheads since HE performs better than GC
when the computation has small multiplicative depth (linear function
Boolean circuit) and GC is better suited for non-linear functions
which can be represented as simple linear-size circuits. However,
it still suffers from significant communication overhead because of
non-linear layers making it difficult to scale to much larger networks.
Our work uses this hybrid protocol for neural network inference but
improves on the communication overhead using the Embassy protocol.

XONN [56] proposed the use binarized neural network (BNN)
with garbled circuits to speedup linear layers. BNNs use XNOR for
multiplication which is considered free when using GC (FreeXOR).
This allowed them to make evaluate much larger networks such as
VGG. However, as they still use GC for the non-linear layers, there
is still significant communication overhead. Furthermore, despite
being more efficient computationally, BNNs show significantly lower
accuracy. Chameleon [57] proposed the use of a trusted third party
to generate multiplication triples during the offline phase. They
adopt a seed expansion technique for multiplication triples to save
communication at the expense of more computation in random number



generation. However, our solution allows the efficient use of the
original beaver triple generation with less communication overhead.

There have been proposals to combine GC with other secure
computation primitives, such as secret sharing using two untrusted
servers, which can be housed by the same cloud and connected in
a high bandwidth and low latency channel [21], [36], [62]. These
solutions, however, make a strong assumption that two untrusted
servers are non-colluding.

HEAX [55] proposed the first hardware accelerator implementation
for CKKS HE on FPGAs. Cheetah [54] significantly accelerates HE
in Gazelle for deeper neural networks by optimizing HE parameters
tuning and operator scheduling, while proposing a custom hardware
accelerator for server-side HE. The results of HEAX and Cheetah are
orthogonal to the contribution of this paper since our solution tackles
the communication bottleneck in MPC.

DELPHI [45] improved upon Gazelle by moving expensive cryp-
tographic operations over LHE cipher-texts to the offline phase and
proposed to use quadratic polynomials to approximate ReLU, which
reduces communication cost. However, DELPHI had to settle with a
hybrid approach because of severe accuracy degradation from quadratic
approximations.

C. Tamper-Resistant Hardware

With the rise of mobile and IoT devices, there is greater risk for
more sophisticated physical tampering and side-channel attacks. To
address this, Google released a tamper-resistant security module [10]
used starting from Pixel 2 phones while ARM released Cortex-M35P
processor [13] for embedded IoT applications. These solutions can
protect against physical penetration and most side-channel attacks
(power, timing, electromagnetic).

Two examples of tamper-resistant USB device available in the
market are IronKey and Kanguru. IronKey is a FIPS 140-2 Level
3-certified device which zeroizes data or makes the device unusable
by applying a wear level current on the device memory after a
configurable number of break-in attempts. Kanguru, on the other
hand, has a casing that is protected with an epoxy compound, which
when removed, destroys the flash chip making the device unusable.

Recently, Immler et al. [35] presented tamper-resistant secure
physical enclosure for PCBs. This work allowed for a more practical
battery-less physical tampering solution and also proposed the use
of PUFs for determining the structural integrity of the device. This
tamper resistance mechanism is particularly useful for Embassy.

D. Hardware Support for MPC

There have been a few works related to hardware support for secure
multi-party computation. Songhori et al. proposed TinyGarble [66] to
convert big combinational circuits to smaller sequential circuits which
is run on multiple clock cycles. The compact circuit results in smaller
memory footprint which can fit in the processor cache. As a result,
cache misses are minimized during garbling while accessing wire
tokens improving garbling performance. This smaller footprint makes
it more useful for embedded devices which have limited compute and
memory resources.

Implementation and acceleration of the garbling operation have been
shown in various hardware platforms [33], [65], [67]. Since they only
tackle the issue of GC computation (garbling), overall performance of
the protocol is not significantly improved since the bottleneck of the
protocol is communication (network transfer) especially with larger
applications. This is in contrast to our work which focuses on the
communication overhead of secure computation.

VII. CONCLUSION

In this paper we explore supporting collections of small but
physically secure devices embedded closely with more traditional
compute and storage resources. The use of co-located trusted hardware
helps resolve the inefficiency of conventional two-party secure
computation protocols with surprisingly little compute. We evaluate
the ability of such devices to participate in trustworthy computations
physically among co-located servers on behalf of a remote client.
This general approach could be useful in many different scenarios,
but we evaluate one of the most integrated ways one might think
to apply such trusted elements: as an active party in a multiparty
computation. We show how this Hardware Embassy can leverage
a local high bandwidth and low latency network connection to
enable more efficient and robust interactive secure computations.
We further show that two important privacy-preserving applications,
secure neural network inference, and private DNA matching based on
Yao’s Garbled Circuit (GC) and Goldreich-Micali-Wigderson (GMW),
are both amenable to this heterogeneous architecture even without
any application specialization. Our experiments indicate that even
when the Embassy is 5× slower than external compute resources
available, the total system performance is higher due to this increased
connectivity. This advantage can be further pressed with addition of
specialized hardware, bringing the total performance improvement up
to over 4.5×.
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