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Abstract—Data movement is a hot-button topic today, with
workloads like machine learning (ML) training, graph process-
ing, and data analytics consuming datasets as large as 30PB.
Such a dataset would take almost a week to transfer at 400gbps
while consuming megajoules of energy just to operate the two
endpoints’ optical transceivers. All of this time and energy is
seen as an unavoidable overhead on top of directly accessing
the disks that store the data. In this paper, we re-evaluate the
fundamental assumption of networked data copying and instead
propose the adoption of embodied data movement. Our insight
is that solid state disks (SSDs) have been rapidly growing in
an under-exploited way: their data density, both in TB per unit
volume and unit mass.

With data centres reaching kilometres in length, we propose
a new architecture featuring data centre hyperloops2 (DHLs)
where large datasets, stored on commodity SSDs, are moved via
magnetic levitation in low-pressure tubes. By eliminating much
of the potential friction inherent to embodied data movement,
DHLs offer more efficient data movement, with SSDs potentially
travelling at hundreds of metres per second. Consequently, a
contemporary dataset can be moved through a DHL in seconds
and then accessed with local latency and bandwidth well into the
terabytes per second.

DHLs have the potential to massively reduce the network
bandwidth and energy consumption associated with moving large
datasets, but raise a variety of questions regarding the viability
of their realisation and deployment. Through flexibility and
creative engineering, we argue that many potential issues can
be resolved. Further, we present models of DHLs and their
application to workloads with growing data movement demands,
such as training machine learning algorithms, large-scale physics
experiments, and data centre backups. For a fixed data movement
task, we obtain energy reductions of 1.6× to 376.1× and time
speedups from 114.8× to 646.4× versus 400gbps optical network-
ing. When modelling DHL in simulation, we obtain time speedups
of between 5.7× and 118× (iso-power) and communication power
reductions of between 6.4× and 135× (iso-time) to train an
iteration of a representative DLRM workload. We provide a cost
analysis, showing that DHLs are financially practical. With the
scale of the improvements realisable through DHLs, we consider
this paper a call to action for our community to grapple with
the remaining architectural challenges.

I. INTRODUCTION

Architects today consistently cry foul on the cost of data
movement. Despite specialised accelerators drastically cutting
computation costs, Amdahl’s Law tells us that we must now
pick up the slack in terms of data movement costs, which have
ballooned significantly. Accompanying this is a significant
increase in the amount of data that we must process for
applications including machine learning (ML), data analytics,
genomics, and experimental physics [12], [31], [33], [42],

1These authors contributed equally to this work.
2HyperLoop™ is a term for high-speed transportation using magnetic

levitation trains and low-pressure tubes; it does not imply a loop topology.

B

FALSE FLOOR
DOCKING
STATION

A

DOCKING
STATION

Fig. 1. A mockup of how a DHL would be located in a data centre.

[44], [52], [53], [60], [63], [68], [78], [93], [94], [98], [105].
The increasing amount of data generated per user per day
is a problem growing at an alarming rate, already reaching
petabytes (PB) per day for data centres, as new applications
demand colossal amounts of data.

Data centre networks are architected to satisfy the needs
of varied, co-running applications. However, moving PB-scale
datasets quickly creates bottlenecks, consuming a static portion
of the data centre’s total bandwidth which could be used
by other, more dynamic applications. Even state-of-the-art
networking and storage solutions may not be enough for the
newest data-hungry applications’ PB-scale datasets [77]. We
motivate this emerging data movement bottleneck with a sim-
ple example. To move Meta’s 29-PB ML dataset [107] from
node A to B with 400Gb/s networking would take roughly 1
week. To achieve an optimised 1-hour transfer time through
parallelisation of data transfer, we would need 161× network
speedup to greater than 64 Tbit/s, which exceeds today’s top-
of-rack switches. The energy of this data movement would
be in the order of megajoules to hundreds of megajoules (We
explain this example in more detail in Section II-C).

Data centre energy consumption has been rising and now
represents a small but significant proportion of global en-
ergy consumption [26], [97]. Characterising the constituent
sources [27], [39] shows that networking can become the
second biggest source of data centre energy consumption [29],
[79]. While copying data optically seems efficient at first, the
transceiver, switching, and network interfacing energy costs
are all fundamental overheads that make the process ineffi-
cient. These costs are growing as data centres become larger
and larger; many data centres are already hundreds of metres
long [3], [5]. In the case of ML, repeated data copies are
common and necessary because datasets are distributed across
the data centre, but, when it comes time to process the datasets,
they must be collected onto compute nodes within the same
rack or nearby racks. Data is aggregated in this way because
repeated operations on a dataset are required to train a single
neural network, and accessing data that is physically closer
takes less time. We argue that rather than performing repeated
data copying, we should change the data centre architecture
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to move the data storage media in a form of “embodied
data movement”. To outcompete optical networking for the
movement of large datasets, we must be able to move our
data for a lower cost. We do not question whether traditional
networking is suitable for typical small transfers but rather
focus on moving emerging PB-scale datasets.

In this paper, we explore restructuring the data centre
architecture to add data centre hyperloops which physically
transport SSDs containing large datasets. Hyperloops consist
of a pair of rails from one endpoint to another. These rails use
magnetic levitation to support and transport a payload, and
they operate inside of a low-atmosphere chamber. We apply
this paradigm at data centre scale to shuttle SSDs between
compute nodes and cold storage.

The density of SSDs has been quietly skyrocketing, in
terms of both data per volume and per mass. Large SSDs can
store 10s to 100s of terabytes (TB) at a mass of hundreds
of grams [16], [80]. We take advantage of the M.2 SSD
form factor to pack data at exceptionally high density. Our
DHL design enables high-speed, highly-efficient data transfer
for very large quantities of data, eliminating data copying
overheads. Using DHL, a data centre can save energy while
also raising performance thanks to bulk network bandwidth
being freed for other applications.

Our data centre hyperloop architecture as presented in
Figure 1 is compatible with existing data centres and is feasible
to implement, potentially by adapting existing, reliable small-
scale hyperloop designs [64]. We evaluate our design with a
high-level parameterised model and compare it against existing
optical networking to demonstrate its superiority for bulk data
transfers, especially over longer distances. Note that we do
not claim to offer solutions to every conceivable challenge
that would come with our data propulsion approach.
Rather, we make the case that the vast majority of these
challenges are surmountable with a mix of flexibility and
creative engineering. With the scale of the improvements
we realise through a DHL-based data centre architecture, we
consider this paper a call to action for our community to
grapple with the remaining architectural challenges. This work
makes the following contributions:

• The observation that hyperloops can take advantage of
SSD storage density, which has grown quietly but rapidly.

• Design of a DHL architecture to transport emerging
petabyte-scale datasets in an energy-efficient manner.

• DHL obtains energy reductions up to 376.1× over
400gbps optical fibre thanks to its improved embodied
data transmission power efficiency of up to 73.3 GB/J.

• We improve data transmission rates in a variety of spe-
cific, practical use cases (vs optical networks) and pose
interesting trade-offs in the architecture of data centres.

• We have modelled DHL inside the ASTRA-sim ML
simulator. DHL obtains between 5.7× and 118× time
speedups (iso-power) and between 6.4× and 135× power
reductions (iso-time) to train an iteration of a represen-
tative DLRM workload, as compared to parallel optical
links.

TABLE I
LARGE EMERGING DATASETS AND DATA CREATION RATES.

Name Size Type

LAION - 5B [9] 250 TB Images
YouTube-8M [21], [25] 350k hours of video Videos
Massive Text [82] 10.25 TB NLP

Common Crawl [1], [19] >9 PB Web Crawl
MLMeta Datasets [107] 3/13/29 PB ML
NIH Dataset [23], GSA [32], [38] 100k Genomes, 17 PB Genomics

LHC CMS Detector [47] 150 TB/s Physics
Meta New Daily Data [6] 4 PB/day BigData
Youtube New Daily Videos [22], [93] 0.7-1.44 PB/day1 Videos

TABLE II
CURRENTLY AVAILABLE STORAGE SOLUTIONS.

Devices Size Package Weight BW Seq
(TB) (g) (Rd/Wr) (MBps)

WD Gold [20] 24 3.5” 670 291
Nimbus ExaDrive [16] 100 3.5” 538 500/460
Sabrent Rocket 4 Plus [84] 8 M.2 5.67 7100/6000

II. BACKGROUND AND MOTIVATION

For decades there has been exponential growth in data
creation and dataset sizes, driven by new applications and
computational capabilities. Table I summarises some of to-
day’s largest datasets and the data creation rates on several
platforms. The first category shows text [45], [82], image [9],
and video [21], [25] datasets used for ML training. These
easily reach hundreds of TBs, with LAION - 5B consisting
of 5.6 billion images (250 TB). The second category contains
petabyte-scale datasets: ML training from Meta [107], massive
web-crawling [19], and genomics archives [23], [32], [38].
Finally, the third category shows data creation rates from
today’s most popular platforms and largest scientific exper-
iments, such as YouTube [22], [93], Meta [6], and the Large
Hadron Collider (LHC) [47]. We emphasise that our proposed
DHL use cases must involve large bulk transfers, as DHLs are
not suited to transmitting a continuous stream of data.

A. Storage technologies

The growth of datasets has put stress on storage solutions.
We observe that SSDs have been quietly growing in density
without significant attention. 100TB SSDs, though expensive,
beat the largest regular HDD in capacity by 5×. In addition,
new form factors like U.2 and M.2 provide remarkably small
and light packages. Table II shows three relevant examples of
large HDD, SSD and M.2 SSD storage devices. Comparing the
data storage per gram across form factors, the 8TB M.2 SSD
is almost 100× lighter than the 3.5” HDD for just 12.5× less
capacity. We select this form factor for the evaluation of DHL
in this paper. Additionally, as storage density improves (we
expect continued scaling for some time), DHLs will achieve
higher embodied data transmission rates. In contrast to optical
networking upgrades, we only need to upgrade the carts’ SSDs
and not the hyperloop itself.

1We have applied a conversion from 1 hour of video to 1GiB.
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Fig. 2. Left: a representative fat tree network topology with three paths between nodes, used to calculate the energy cost of transferring 29PB. Right: The
five routes taken to traverse the network on the left and the corresponding energy consumption needed to transfer a 29PB dataset.

B. High-Performance Networks

Many applications demand high bandwidth networking to
achieve the best performance. Consequently, data centres are
usually designed with fibre optic networking. The current
standards of GbE and Infiniband offer 400gbps, while 800
and 1600gbps are beginning to see adoption. One of the big
challenges of optical networking is that while optical switching
has proven promising [59], there has not been widespread
adoption as there remains a drastic, inverse relationship be-
tween the per-port price of optical switches and the power
penalty incurred by the switches [35]. Instead, we presently
do electrical (digital) switching, incurring higher energy costs
and delays.

Multiple studies suggest that networking is one of the
main energy consumers in a data centre. Surprisingly, in
some scenarios, the data centre network is underutilised [29],
although it consumes up to 40% of total data centre energy.
Much research has been done trying to improve the GB/J ratio,
e.g., by changing the network topology, to trade off between
performance and cost. Next, we characterise three possible
networking setups in order to show the energy consumption
of the network when moving a PB-scale dataset.

C. Case of transferring 29PB

Figure 2 shows a simple exercise to prove existing network-
ing solutions are not suitable for transferring PB-scale datasets.
We assume a storage node wants to transfer 29PB of data
through the network to node A, B or C, and that node C is in
a different aisle than nodes A and B. These connections are
highly influenced by the network topology, which regularly
trades off performance and cost. We choose a slightly simpler
topology than existing cutting-edge topologies [96]. For each
node, we show a plausible path, except for node A, to
which we show three different connections: a direct minimal
connection only accounting for the transceiver energy (A0); a
direct, passive connection with regular NICs (A1); a passive
connection through a switch (A2). The DHL path (last) shows
that storage access is inevitable in all cases, and thus we do
not model storage access in our evaluation.

TABLE III
CHARACTERIZATION OF MODERN NETWORKING POWER CONSUMPTION.

Component Speed (Gbit/s) Ports Power (W)

Transceiver [2], [71] 400 N/A 12

NIC [8], [11] 100 N/A 15.8-22.5
NIC [15], [17] 2x200 N/A 17-23.3

Switch QM9700 [18] 400 (per port) 32 747-1720
Switch 9364D-GX2A [4] 400 (per port) 64 1324-3000

Table III shows the power for network cards and switches
for different networking technologies. Note that switches’
power per port depends on whether the cable is active or
passive. Except A0, we assume that the network links from
the nodes to the top-of-the-rack switch are passive and the rest
are active. To maximise the available network performance,
we use the table elements marked in bold. If we assume no
interruption during the transfer, we obtain a total of 580k
seconds (6.71 days) to transfer 29PB over the network at
400gbps. Of course, multiple optical links could be used in
parallel, but this creates a significant burden on the data centre
network. Next, we consider energy consumption.

Option A0 is the most basic scenario only considering the
power of the two directly connected transceivers with an
estimated energy of 13.92MJ. Option A1 and A2 represent
more realistic scenarios where the nodes are placed nearby, in
this case, in the same rack. The estimated energy consumption
of A1 and A2 are 22.97MJ and 50.05MJ, respectively. Option
B and C represent scenarios where the nodes are in different
racks, with a varying number of switches to transit. The
estimated energy consumption of B and C are 174.75MJ and
299.45MJ respectively. A more complex topology found in
current data centres would further increase energy demands.

With this simple exercise, we have shown that moving large
quantities of data in a data centre can consume significant
energy and several days. In a current system, this transfer
would typically be distributed to several nodes and parallelized
by adding more network connections to reduce the time,
but this would also consume significant additional resources
and not improve energy consumption. Additionally, any long

3



term data transfer means blocking a base amount of network
bandwidth for the whole duration, which is undesirable. This
makes us question if, fundamentally, networking is not
the most efficient way of moving PB-scale datasets. A naive
solution to this problem would be to even consider moving the
disks by hand. Although this could be done relatively quickly,
the fact that 29PB requires 1319 22TB HDDs or 290 100TB
SSDs, makes the idea impractical without automation. Further,
the energy and dollar cost of moving the disks by hand would
likely eclipse that of optical networking.

D. Potential Applications for DHLs

We soon show the energy and cost savings of applying a
DHL for large scale data movement, but we first motivate the
existence of applications which would necessitate such large
data transfers. We consider three settings, across experimental
physics, data centre backups, and machine learning training.
Each of these use cases could lead to a deployment of
one or more DHLs which would be closely tailored for the
specific setting. We expect the community will concoct many
other potential use cases for DHLs with specialisations or
generalisations of their own, especially as PB-scale datasets
become more common.

1) Experimental Physics: As shown in Table I, an ex-
periment like the CMS detector at the LHC can produce
150TB/s of data bandwidth [47]. Other high energy physics
and astronomy experiments produce similarly large quantities
of data which stress the available computing resources. At
the LHC in particular, it is infeasible to capture all of the
data from an experiment, forcing the adoption of aggressive
filtering to make the problem more manageable. Not only does
this filtering require custom chips, but those chips must also
be radiation hardened against the experiment itself [51]. Per-
forming machine learning directly on the unfiltered sensor data
has been shown to have significant statistical power [49]. As a
result, one use case we consider for DHL is to connect physics
experiments to off-site processing, potentially in independent
data centres, alleviating current bandwidth bottlenecks [47].

2) Data Centre Bulk Backups and Communication: To
ensure redundancy and protect data in the event of a data
centre failure, data centres are constantly undergoing backups.
As the scale of emerging datasets grows, the size of bulk (not
background trickling) backups will scale up proportionally, as
will their power, bandwidth, and time costs. Bulk backups
consume tremendous bandwidth and cause traffic spikes that
lower the efficiency of networking in the data centre [102].
They can also reach several PB and can require significant
time to realise. These bulk backups stress the network of a
data centre, reducing the available bandwidth offered to other
applications. Crucially, they are large in size, and occur in
discrete chunks [69], which make them an ideal application
for DHLs.

3) Machine Learning Applications: To build efficient ma-
chine learning systems, computer architects are constantly
grappling with its prodigious computing requirements, signifi-
cant parallelism, and high memory bandwidth needs. From the

TABLE IV
ML MODELS WITH A SIGNIFICANT STORAGE FOOTPRINT.

Name # Params Size (Bytes)2 From Year

GPT-3 [30] 175B 700GB OpenAI 2020
Jurassic-1 [48] 178B 712GB A21 labs 2021
Gopher [82] 280B 1.12TB Google 2021
M6-10T [66] 10T 40TB Alibaba 2021
Megatron-Turing NLG [88], [92] 1T 4TB MSFT&NVDA 2022
DLRM 2022 [72], [107] 12T 44TB Meta 2022

software perspective, there has been a trend of creating bigger
and bigger models to improve accuracy in workloads like nat-
ural language processing (NLP), image and video recognition,
and deep learning recommendation models (DLRM). Table IV
summarises some recent large ML models in terms of their
publicly shared sizes. Nowadays, it is common to see models
with billions or trillions of parameters. All of the training
data for these massive models must be ingested by compute
nodes during the training process, creating I/O bottlenecks that
are becoming more significant as accelerators’ raw throughput
increases [81]. Recently, there has been a rising recognition
of and subsequent research into these bottlenecks in the
architecture research community and beyond [99].

Major cloud providers now provide supercomputers in the
data centre expressly for ML training, such as NVIDIA’s new
DGX GH200 [75]. If we consider that some of the biggest
ML models require many hours of training, we can estimate
the ML training energy bill at several million dollars [41].
Additionally, due to recent dataset growth, Meta has reported
that the energy required for data ingestion and pre-processing
can be larger than that of computation for model training [106].
This creates a strong argument for data centre architects to
invest in special data centre-scale solutions to reduce the
carbon footprint of training (both in terms of computation
and data ingestion), potentially creating big savings in energy
bills [14], [34], [54], [65], [72].

We observe that with the growth in demand for new
foundation models, new models with their own independent
architectures are regularly being trained on the same, large
datasets. The adoption of DHLs enables the movement of these
training datasets outside of the main data centre network and at
significantly lower cost than if the regular network were used.
We see potential for ongoing savings repeatedly and over the
long term as these same datasets must be used again and again
to train a variety of different models. Given the importance
of emerging machine learning models, we focus on this use
case when analyzing the architecture and performance of
the DHL for the rest of the paper.

III. DHL ARCHITECTURE

DHL is a high-bandwidth data transfer mechanism that
operates by shuttling SSDs at high speeds along a track,
similar to a maglev train. The physical system itself could be
hidden beneath the typical false floor of a data centre [100],
whilst a software layer (administered via the existing optical
network) abstracts away the management of data, SSDs, and

2Obtained from applying a common conversion of Param=32bits.
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Fig. 3. An overview of the DHL cart and rail design showing the placement
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maglev carts. In this section, we explain the necessary details
to realise a DHL inside a data centre.

A. Maglev Systems Foundations

We have opted for a vacuum-sealed maglev in DHL because
maglev transport systems do not experience contact friction,
making them long-lasting and energy efficient. Furthermore,
maglev trains can operate at high speeds, enabling the sys-
tem to transport SSDs hundreds of metres in just seconds.
To suspend a payload over a rail, maglev typically uses a
combination of permanent magnets and electromagnets. The
suspension of the cart is achieved by integrating a Halbach
array [58] of permanent magnets that generates a strong,
directional magnetic field. When the cart is accelerated over
a conductive rail [70], [73], the Halbach array generates a
current in the rail, which produces a magnetic field that
levitates the cart.

Maglev systems require active stabilisation to ensure the
maglev train stays centred on the rails. It is only necessary to
actively control the cart when it deviates from the equilibrium
point. However, if the magnetic arrays are properly tuned,
negligible force is required to hold the cart in place [73],
minimising the costs of the stabilisation. Finally, accelerating
the cart in a maglev system is typically performed by using
one of the two main types of motors: linear induction motors
(LIM) and linear synchronous motors (LSM). Both operate by
exposing a metal fin (bottom of the cart) to a moving magnetic
field generated in the rail, causing forward acceleration.

B. DHL Components

The DHL is comprised of six main components: 1) the cart,
2) the rail, 3) the accelerator, 4) the brake, 5) the docking
station, and 6) the library. Below, we discuss the design of
these components and their operation.

1) Cart: The cart (Figure 3) is the magnetically levitated
vehicle that transports disks along the rail. The cart structure is
modelled after existing maglev trains and can be constructed
from polyacetal plastic, specially selected for its desirable
machining characteristics, strength, and low density [61]. It
contains a magnet array on the bottom to keep the cart

Accelerator/BrakeAccelerator/Brake Active Stabilization

LIBRARY

DOCKING
STATION

ENDPOINT

DOCKING
STATION

Fig. 4. Visualisation of a single DHL Rail segment.

levitating, while constraining unwanted horizontal or vertical
motion. On the cart, we choose neodymium magnets because
of their high magnetic flux per unit mass. The lightweight
nature of current SSD technology (on the orders of grams per
M.2) easily enables the design of a cart with a storage capacity
of hundreds of TB. This capacity can be even higher, as SSD
density continues to improve, requiring little to no engineering
effort to update the cart. In addition, the number of SSDs per
cart can scale depending on the needs or restrictions of a given
system. For our target use case, we assume that the SSDs
never enter or leave the cart, and are instead fixed inside the
cart, meaning that the cart docks with its SSDs as a single
unit. SSDs may be written to/read from whenever a cart is
connected to a server rack.

2) Rail: The rail (Figure 3) is designed to be surrounded
with a series of conductive rings made of aluminium or another
cheap, conductive material to enable the levitation of the cart.
This design is selected because it is easy to implement and it
has a lift force to magnetic drag ratio exceeding 50 at speeds of
greater than a few dozen metres per second (assuming copper
coils) [73]. Thus, the design is highly efficient and allows us
to ignore the effect of drag in our model. The rail itself is
made of PVC (or another cheap plastic). The rail housing is
entirely composed of individual DHL segments made of PVC
which has the strength to withstand the internal vacuum. Each
DHL segment contains 2 rails supporting the coils needed to
induce magnetic levitation. There is an area between the 2
rails where the mechanism to accelerate or decelerate the cart
is placed. It also contains the necessary electronics to achieve
active stabilisation such as an array of sensors to measure the
minimum deviations that the cart suffers. These segments of
the rail are designed to be modular and easily connectable [89].

3) Accelerator: As noted, there are two main types of ac-
celerators in maglev systems. We have selected LIMs for DHL
due to the lower component complexity and cost associated
with construction [56]. These electromagnetic accelerators are
placed at the beginning of the rail (Figure 4) and move the cart
at high speeds without making physical contact with it, which
drastically increases the working lifetime of materials [56].

4) Brakes: Similar to how the carts are accelerated, they
are decelerated using an LIM. When current is pushed in the
opposite direction as during acceleration, a magnetic field is
generated opposite the direction of motion, which induces a
magnetic drag in the fin that will slow the cart down. The
same LIM can be used to re-accelerate the cart to precisely
control its location in the docking station (Figure 4).

5) Endpoints: Docking station (DS): The left of Figure 5
shows the solution proposed as the docking station for DHL.
A docking station is a single location where a single cart is
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Fig. 5. DHL data centre integration: Docking Station (left); Rack connection and Library (right).

temporarily stored to interface with the adjacent rack’s com-
pute nodes. When the cart reaches an endpoint, electromagnets
in the DS are briefly powered to pull the cart up off the track
and engage a latch. In order to eject the cart back onto the
track, the polarity of the electromagnets is reversed to release
the latch, repel the cart, and place it back on the rail.

Once the cart has been connected to the docking station, by
design, it has also coupled the SSDs with their PCI Express
(PCIe) connectors. These give local PCIe bandwidth of many
SSDs to the nodes on top of a given endpoint, which for
example, in version 6 provides 3.8tbps for 64 lanes, corre-
sponding with 1 lane per SSD in our evaluation’s maximum
cart configuration. We propose a solution with commonly
available connectors, but these might wear out with excessive
usage (Section VI).

Making the docking stations move the cart vertically enables
having many docking stations at a given endpoint, located one
after the other on the same rail. The only limitation is that
during the cart docking process, it is not possible to shuttle
another cart past the cart being docked (for a few seconds).
Additionally, being able to have many docking stations in
a single endpoint enables the pipelining of carts: while the
endpoint is processing the first cart, the next cart can be
shuttled. Each docking station can be connected to all nodes
in the same rack using existing PCIe technology so each node
can access many SSDs in parallel.

6) Endpoints: Library: The Library is a special node placed
at the start/end of the DHL where SSD carts serve as cold
storage. It stores SSD carts using its own internal docking
stations to lift the carts from the main track. For our present
design, these library docking stations are not connected to
any servers. The library supports sending multiple carts in
series, which enables pipelined block data transfers. Having
the library enables easy expansion of the DHL’s data capacity
by extending the rail and adding more carts and docking
stations. It also offers an easy solution to remove the carts
for repair in the case of maintenance or failure.

C. Data Centre Adoption: Rack/Node Hardware Connection

Figure 5 shows DHL adoption in a data centre where one
rack is connected. Carts are either stored in the library area
or in one of several docking stations below the rack. For
our chosen use case, we propose to have a straight DHL
connecting an ML supercomputer (spanning one aisle) and
the cart library. This is compatible with the typical grid

design of existing data centres, and the DHL itself can be
stored almost entirely underneath the “false floor” found in
most data centres. The rack’s docking stations each provide
PCIe interfacing between the connected carts’ SSDs and the
compute nodes performing the ML training.

D. Data Centre Adoption: Software API

Adopting a DHL in a data centre also relies on management
software to coordinate SSDs’ movement. Software controls
access through an API that is accessed through the standard
network. It then schedules the shuttling of the carts between
the library and the endpoints if the state of the system permits
such an operation, e.g. the cart is not busy being read/written
by a node. This can be incorporated into existing storage
management APIs like NVIDIA Magnum IO [13], which
provides a collection of tools to scale I/O for ML. DHL can
be added to the storage layer to speed up bulk transactions:
e.g. ML training data that can be distributed by multiple carts.

To ease adoption, DHL abstracts the scheduling of carts’
launches, control of their location, and their data mapping. To
avoid delays, the fact that a cart can only be in one place at
a time needs to be considered. Scheduling must also account
for the fact that data stored on a cart is inaccessible during
transit. For our selected applications, this is not a concern.
Relatedly, if an SSD fails in-flight, the endpoint’s DHL API
will report the error, and RAID and backups can ameliorate
the issue. The API provides at least these four commands:

1) Open: The rack requests an SSD cart from the library. If
the SSD cart is present, it is shuttled to the rack.

2) Close: The rack disconnects an SSD cart from a docking
station. The cart is shuttled back to the library.

3) Read: Read data from a local SSD cart from an adjacent
docking station.

4) Write: Writes data to an SSD cart at a specific docking
station.

E. DHL Communication Architecture

Fundamentally, DHL opens the door for a different archi-
tecture contrary to existing norms, which reduces costly data
movement. DHL can efficiently deliver a massive amount of
data in a short period of time. Nodes at a DHL endpoint can
then access this data with local latency and bandwidth, while
also having random access to the many parallel SSDs in the
cart. This removes several bottlenecks that current systems
are forced to engineer around via techniques such as batching
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and data distribution. However, DHL cannot trivially offer the
same flexibility to connect thousands of nodes in the same
fashion as existing networking as, for example, the SSDs
cannot be accessed while in transit. Thus it is likely to replace
only some uses of the data centre network. The use cases
presented in this paper are examples of where the DHL
model of communication and computation could excel.
Furthermore, at the current data creation rate, we envision
more use cases to arise in the near future.

Due to the complicated nature of data centre data manage-
ment, we propose to use DHL as a standalone data transfer
system, external to and not necessarily consistent with the
overall data management system. In this form, DHL data
can operate freely, accepting data from the outside system
as necessary, without requiring costly global synchronisation.
This model aligns with our proposed ML training use case
where datasets are regularly reused (and mainly appended) to
train a variety of new models.

IV. METHODOLOGY

This section describes the methodology employed to eval-
uate our DHL proposal. We first use an analytical model
to understand the DHL parameter trade-offs and then com-
pare it with state-of-the-art networking. Next, we perform a
simulation-based comparison with state-of-the-art networking
for a representative DLRM workload. Table V shows a sum-
mary of the model’s parameters (the default being in bold). For
the sake of analysis, we have presented a specific DHL design
tailoring in this section. There exist many other, application-
specific, effective design configurations/tailorings.

A. Cart Mass and Data Capacity

The components of the cart can be implemented as follows:
• Magnets: The mass of the cart is calculated assuming the

density of neodymium magnets to be around 7.5g/cm3.
Each side of the cart consists of Halbach arrays with a
few magnets each and some extra correcting magnets for
dynamic stabilisation. With standard Halbach arrays and
our track configuration, we only require 10% of the cart’s
mass to be comprised of magnets to achieve the necessary
levitation force with an air gap of 10 mm, which is a
standard levitation height for vehicles such as ours [73].

• Central Fin: The middle of the cart has a conductive
aluminium fin for acceleration and braking. This fin only
needs to constitute 15% of the cart’s total mass in order
for the LIM to produce the acceleration we require [90].

• SSDs: 8TB SSDs come in packages as light as 5.67
grams (in the M.2 form factor) [84]. Assuming 32 of
these SSDs are loaded onto the cart, their packed size is
approximately 60 mm by 60 mm by 80 mm and their
mass is 180 grams. For 16 and 64 SSDs, we obtain a
total mass of 91 and 363 grams, respectively.

• Frame: The mass of the cart frame is no greater than
30 grams per the diagram given. The frame can be light
because it is made of a low-density plastic and is simply
meant to stabilise the Halbach arrays and SSDs.

TABLE V
THE LISTS REPRESENT THE DIFFERENT DHL PARAMETERS LATER

EVALUATED. THE BOLDED ENTRIES ARE FOR OUR MAIN SETUP.

Main Parameters Value

Time to dock or undock (pessimistic) 3s
Mass of Cart 161, 282, 524 g
Distance of DHL 100, 500, 1000 m
Acceleration Rate 1000 m/s2

Maximum Speed 100, 200, 300 m/s
LIM efficiency 75%
LIM length 5, 20, 45 m
Number of SSDs per cart 16, 32, 64
Storage per cart 128, 256, 512 TB

1) Acceleration: LIMs of the size used by the DHL are
rated at high efficiencies (> 75%) and, when implemented as
in our design, can produce an acceleration of a few hundred
metres per second [56]. Using a physics model, this efficiency
can be used to calculate the size of the LIM and the energy
required to accelerate to different speeds. The length of the
LIM is proportional to the max speed of the cart, hence
requiring an LIM of 5, 20 and 45 m for the different max
speeds of the cart: 100, 200, and 300 m/s.

2) Active Stabilisation and Motion: We design a track and
coils to have nearly constant lift and drag forces on the cart:
the centre of the track has coils that are more spaced out, and
either end has coils that are more tightly packed. This avoids
issues with variable drag force on the cart, as drag force is a
small constant proportion of the lift force [73]. Once the cart
is coasting along the rail, the total energy loss due to drag can
be calculated with the following equation:

Ld = (g + 2c2)Mx/c1

where g is gravitational acceleration, Ld is the energy lost
to drag, M is the mass of the cart, x is the length of the rail,
c2 is the downward force generated by the bottom Halbach
array, and c1 is the lift-to-drag ratio. The lift-to-drag ratio is
the only factor that is velocity dependent, and it becomes near
constant at high speed [73]. Furthermore, c2 may be driven
to a small fraction of the normal force on the cart by simply
having the cart ride low on the rail. Assuming a pessimistic
c1 ≈ 10 [73], the energy lost at high velocities and small
rail lengths (like 200 m/s and 500 metres or 1000 metres) is
negligible. Therefore, the only power concern is from active
stabilisation, which it is known to be conducted with minimal
power usage [46].

3) Deceleration: We decelerate the cart using the same
LIMs used for acceleration at either end of the track. Pes-
simistically, we assume that the cart requires as much energy
to decelerate as it does to accelerate. In practice, the cart
would take slightly less energy to decelerate than to accelerate
because deceleration is aided by the inherent magnetic drag
of the system, while the acceleration is hindered by this drag.

B. Vacuum conditions

We assume that DHL operates in a closed tube that is
evacuated to a rough vacuum (for example, 1 millibar). This
condition allows us to neglect air resistance and requires
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TABLE VI
DHL DESIGN SPACE EXPLORATION FOR A SINGLE LAUNCH BETWEEN TWO ENDPOINTS (MIDDLE); ENERGY REDUCTION AND TIME SPEEDUP AS

COMPARED TO DIFFERENT 400 GBPS NETWORK SCENARIOS MOVING 29PB (RIGHT).

Parameters Metrics for a single launch Metrics for moving 29PB

Speed Length Cart Data Energy Efficiency Time BW Peak Power Time Energy Reduction

(m/s) (m) (TB) (KJ) (GB/J) (s) (TB/s) (kW) Speedup A0 A1 A2 B C

100 500 256 3.7 68 11 23 38 229.6x 16.3x 26.9x 58.7x 204.8x 350.9x
200 500 256 15 17 8.6 30 75 295.1x 4.1x 6.7x 14.7x 51.2x 87.7x
300 500 256 34 7.6 7.8 33 113 324.6x 1.8x 3.0x 6.5x 22.8x 39x

200 100 256 15 17 6.6 39 75 384.5x 4.1x 6.7x 14.7x 51.2x 87.7x
200 500 256 15 17 8.6 30 75 295.1x 4.1x 6.7x 14.7x 51.2x 87.7x
200 1000 256 15 17 11 23 75 228.6x 4.1x 6.7x 14.7x 51.2x 87.7x

200 500 128 8.6 15 8.6 15 43 147.5x 3.6x 5.9x 12.8x 44.8x 76.8x
200 500 256 15 17 8.6 30 75 295.1x 4.1x 6.7x 14.7x 51.2x 87.7x
200 500 512 28 18 8.6 60 140 587.5x 4.4x 7.2x 15.7x 54.9x 94.0x

100 500 128 2.1 60 11 12 22 114.8x 14.3x 23.6x 51.4x 179.4x 307.3x
100 500 512 7 73 11 46 70 457.3x 17.5x 28.8x 62.9x 219.5x 376.1x
300 500 128 19 6.6 7.8 16 64 162.3x 1.6x 2.6x 5.7x 19.9x 34.1x
300 500 512 63 8 7.8 66 210 646.4x 1.9x 3.2x 7.0x 24.4x 41.8x

minimal power to maintain [76]. It is reasonable to assume
that such a vacuum can be created with minimal power usage
because our hyperloop has a small cross-section area.

C. Library Insertion/Extraction

Using an LIM to decelerate the carts enables us to have
precise control over where the carts stop. The current design of
the library stores the carts with SSDs directly above the track.
Then, it arrests the cart’s motion when it is aligned with its
slot in the library, and inserts it using auxiliary magnets. The
docking/un-docking procedure can take less than 2 seconds
using state-of-the-art maglev technology [73], [85], but we
conservatively assume 3 seconds for the entire procedure.

D. Evaluation Metrics and Experiments

In order to evaluate DHL, we first explore the design
space of the following parameters: the max speed of the cart,
the length of the track, and the cart’s data storage capacity.
Second, we compare the energy and time required by DHL
to move the 29PB dataset explained in Section II-C against a
state-of-the-art fibre optic connection. We assume the whole
dataset resides in the library. We characterise a single DHL
motion between two endpoints using the following metrics:

• Energy: Necessary energy in KJ.
• Time: Total time in seconds.
• Bandwidth: Obtained bandwidth in TB/s.
• Power: Peak power needed in KWatts.
• Efficiency: Data moved per energy employed in GB/J.

E. ASTRA-sim Simulation

Next, we perform a simulation study using a state-of-the-
art distributed ML simulator, ASTRA-sim [83], [101]. All
experiments are based on training a DLRM ML model as
used by Meta with their 29PB data set. We simulate the
DHL as a high-bandwidth, high-latency network layer with
the parameters from the previous design space exploration,
and we compare its performance in terms of time and power

required to perform a single iteration (gradient descent (GD)
step) with respect to a regular optical network. We consider the
basic case where DHL is a single rail connecting a library to
a single server with different docking stations. Modelling the
DHL as a network link does not capture the quantised nature
of DHL data transfers. However, the latency and bandwidth are
set such that the modelled DHLs account for this difference.

The time taken to transfer data over an optical link can
be reduced by adding more links in parallel. Similarly, the
time taken to transfer data over a DHL can be reduced by
operating multiple DHL tracks in parallel. Both adjustments
require increased power consumption. To account for this we
fix a specific power budget and then include the maximum
number of DHLs or network links in parallel that can operate
at this power. For the sake of numerical stability, we linearly
downscale the dataset size and the latency for DHL by a factor
of 107, perform the simulation, and then upscale the resulting
times by the same amount. We justified this by verifying that
the time per GD iteration is in fact linear in the dataset size.

V. EVALUATION

In this section, we present the evaluation of DHL. First,
we perform a design space exploration of the different DHL
parameters. Second, we compare DHL against the state-of-the-
art fibre optic with the exercise from section II-C. Finally, we
present the estimated monetary cost of a DHL.

A. Design Space Exploration

In order to understand the implications of the DHL pa-
rameters, we explore different DHL lengths (100-500-1000
m), maximum speed (100-200-300 m/s), and cart storage
capacity (128-256-512 TB). The first three columns of Table
VI present the different configurations considered, and the rest
of the columns are the resulting metrics obtained with every
configuration explained and highlighted in bold next.

Energy (KJ) to both launch and decelerate a single cart
between two endpoints. We do not have to consider any other
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stages besides acceleration and deceleration because their
energy consumption is negligible, and thus track length does
not affect energy. However, the maximum speed and the cart
size have a big impact on the energy consumed. We observe:
(a) max speed of 100 and 200 m/s have a huge advantage over
higher speeds which may become prohibitive; (b) It costs a
little less than double to transport twice the data (8.6-15-28KJ
for 128-256-512TB carts), which makes it energy efficient to
increase the cart’s data storage.

Time (s) to move the cart between two endpoints con-
sidering: un-dock, accelerate, motion at maximum speed,
decelerate, and dock. The time has two components: the
time spent during acceleration/motion/deceleration (depends
on DHL parameters), and the time spent to dock and un-dock
(pessimistic assumption of 3 seconds each). Consequently,
we can improve time by reducing the docking/un-docking,
increasing the max-speed of the cart or reducing, if possible,
track length. We observe: (a) The docking/un-docking time has
a huge impact on the total time to move DHL; (b) maximum
speed is the parameter that most reduces the time at the
expense of energy, as seen previously.

Efficiency (GB/J): The amount of data that DHL can move
per unit of energy. We observe: (a) maximum speed of 100 m/s
obtains the highest efficiency of about 70 GB/J; (b) increasing
the data storage per cart slightly improves efficiency (e.g. from
60-73GB/J for 100m/s 128-512TB cart).

Bandwidth (TB/s): The “embodied bandwidth” of the
DHL excluding time to load and unload data from SSDs, and
without any pipelining to be conservative. We obtain from 15
to 60 TB/s, which is between 300× and 1200× faster than
fibre optic network. We observe: (a) the majority of the time
is spent on the docking and un-docking, limiting bandwidth;
(b) increasing data cart storage increases bandwidth, which
will continue with technology scaling and further NAND
stacking; (c) DHL obtains an outstanding embodied bandwidth
compared to fibre optic, even without pipelining.

Peak Power (kW) of a DHL launch operating at maximum
capacity. Note: We can reduce DHL’s peak power by adjust-
ing the acceleration rate and max speed, slightly increasing
acceleration time but reducing power.

B. Moving 29PB dataset

We now compare DHL to optical networking when trans-
porting large datasets. Mimicking the previous exercise in
Section II-C, we only focus on the “embodied bandwidth” and
the energy of DHL to transport the dataset. We do not account
for the time or energy of reading the data, which must be
done in both the traditional and DHL settings. In this manner,
we can compare both results. Table VI shows the energy and
time reductions of DHL compared to the different data centre
network scenarios. Depending on the storage capacity of each
cart: 128, 256 or 512 TB, DHL needs 227, 114 or 57 trips to
transport the 29PB dataset. Since the endpoint has a limited
capacity to dock carts, it needs to return the carts to the library
periodically. This limitation doubles the number of total trips
required. We can remove this limitation if we account for the
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Fig. 6. Time required (Y-axis, log scale) to do an iteration of ML model
training with respect to the communication power budget (X-axis) using a
29PB dataset. Modelling was conducted using ASTRA-Sim. DHL-X-Y-Z
indicates a DHL operating at X m/s over a distance of Y metres with cart
capacity Z terabytes. Networks A, B and C are the same as in Section II-C

time to read the SSDs, where we can apply pipelining: while
processing a cart, launch different ones. Additionally, with two
unidirectional rails, we could avoid the return travel expense.
We elaborate upon these ideas in Section VI.

DHL obtains energy reductions from 1.6× up to 376.1×
depending on the baseline and DHL configuration. For the
default design (maximum speed of 200 m/s, length of 500m,
and cart capacity of 256 TB), DHL consumes from 4.1×
up to 87.7× less energy than the optical network. Across
all configurations, DHL outperforms the unrealistic direct
connection scenario (Option A0 from Section II-C) in which
we only account for the transceivers’ energy cost. Specifically,
we achieve an improvement of between 1.6× and 17.5×. If
we look at the time to move the whole dataset, DHL clearly
outperforms the optical fibre by a factor of between 114.8×
and 646.4×. We can conclude that DHL is more energy
efficient and faster than optical fibre when transferring large
datasets like those used for ML training, our target use case.

C. ASTRA-sim Simulation

We use ASTRA-sim to model the time taken for a ML
training iteration (including time to fetch training data and to
perform the computations) using different DHL and network
schemes. Figure 6 plots the time per iteration as a function of
the average power budget allotted for the network. Each DHL
datapoint represents the performance achieved with a discrete
number of DHLs operating in parallel (the leftmost point
in each curve represents the performance of a single DHL).
Similarly, each network datapoint represents the performance
obtained using as many links as the power budget allows
(assuming a continuous, not quantised number of links for
simplicity). We observe that for a fixed power budget, DHL
consistently outperforms the different network scenarios.

Table VII compares the average power consumption and
time taken to perform one training iteration for different
communication schemes. We compare against a DHL imple-
mentation with a single 500 metre track operating at 200 m/s
with 256 TB per cart. Table VII (a) gives a comparison where
all networks are allotted a fixed power budget of 1.75 kW
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TABLE VII
RELATIVE PERFORMANCE OF NETWORK SCHEMES VERSUS DHL

(a) Time Comparison with Fixed Average Power

Scheme Avg Power (kW) Time/Iter (s) Slowdown w.r.t. DHL

DHL 1.75 1350 1x
A0 1.75 7680 5.7x
A1 1.75 12500 9.3x
A2 1.75 26900 19.9x
B 1.75 93300 69.1x
C 1.75 159000 118x

(b) Communication Power Comparison with Fixed Iteration Time

Scheme Avg Power (kW) Time/Iter (s) Power Increase w.r.t. DHL

DHL 1.75 1350 1x
A0 11.2 1350 6.4x
A1 18.3 1350 10.5x
A2 39.9 1350 22.8x
B 139 1350 79.4x
C 237 1350 135x

(this is the average power consumed by our example DHL
implementation). Table VII (b) gives an analogous comparison
with a fixed time quota. The tables show that DHL outperforms
all optical network schemes both in terms of time and energy
consumption.

D. Cost

To estimate the materials cost of the DHL, we look at the
commodity cost of each of the components. We do not analyse
the construction cost, as this is highly variable and application-
specific. The largest consideration is the components that
scale with distance. The rail, made of PVC, is surrounded by
aluminium rings, each of which is designed to be around 3.62
grams. The rail and carts are enclosed in a PVC tube. These
costs are summarised in Table VIII (a). The acceleration and
deceleration portions of DHL are achieved using an LIM that
is placed at each endpoint and has 3 main components: a PVC
stator, current-carrying copper coils, and a variable frequency
drive (for control). The costs per LIM are summarised in Table
VIII (b). Finally, the total DHL costs for a given configuration
are summarised in Table VIII (c). DHL costs roughly twenty
thousand dollars, which is a typical price for a large 400gbps
switch of the type used in our evaluation.

E. Minimum Specifications for DHL to Outperform Optical

For the majority of this paper, we analyse the case of a 29
PB dataset transmitted over large distances. DHLs can also
outperform optical networking at much smaller scales. The
main trade-off involves the time required to dock and undock
carts. This 6 second overhead is unavoidable, even for very
small transfers and very short distances. DHLs do have one
advantage here: we can afford to launch carts at much lower
speeds. For a DHL with 360 GB carts, 10 m/s top speed,
and 10m distance, each one-way data transfer requires 7.2
seconds and a minuscule amount of energy. A single optical
link under the simplest scenario (A0) would be able to transfer
the same amount of data in 7.2 seconds, but at the cost of 144
J. Therefore, DHL is desirable when transferring datasets of
size at least 360 GB over at least 10 metres.

TABLE VIII
COMMODITY COST OF THE DHL MATERIALS TAKEN ON MAY 2023.

(a) Total Rail Cost

Cost Distance (m)

(USD/kg) 100 500 1000

Aluminium 2.35 $117 $585 $1,170
PVC (rail) 1.20 $116 $580 $1,160
PVC (vacuum tube) 1.20 $500 $2,500 $5,000
Total - $733 $3,665 $7,330

(b) Total Accelerator/Decelerator Cost

Cost Top Speed (m/s)

(USD/kg) 100 200 300

Copper Wire 8.58 $792 $2,904 $6,512
VFD - $8,000 $8,000 $8,000
Total - $8,792 $10,904 $14,512

(c) Overall Total Cost

Top Speed (m/s)

100 200 300

100 $9,525 $11,637 $15,245
Distance (m) 500 $12,457 $14,569 $18,177

1000 $16,122 $18,234 $21,842

VI. DISCUSSION

Alternative Track Designs For our primary use case,
we have considered using a single DHL between endpoints
with LIMs at each endpoint to both accelerate and brake.
However, we can also consider a dual DHL design, with one
outbound and the other inbound. This enables two notable
improvements: First, it eases pipelining, as carts could shuttle
back and forth simultaneously. Second, it enables the use
of passive brakes that do not require external power e.g. an
eddy current brake, which is a set of permanent magnets that
induce magnetic drag in the fin as it passes through. This
would eliminate the power cost of using an LIM for braking,
essentially halving DHL’s power consumption.

Regenerative braking: It is possible to recover some
energy when braking the cart [40] as is done for other electric
vehicles, which would increase DHL’s efficiency. Regenerative
braking implementations’ efficiency range from 16%-70%.
We emphasise that even without regenerative braking, DHL
surpasses the speed and power consumption of standard
network transfer potentially by orders of magnitude.

Multi-stops: For our target use case, the proposed design
only includes two endpoints, however a multi-stop DHL is
also possible. This would entail a slightly more complicated
mechanism to stop carts at any desired location as well as
management of carts at different velocities. Our proposed sys-
tem is designed to extend to this use case without significant
modifications. Multi-stop would motivate higher speeds to
ameliorate potential contention from different users.

Repairs We propose placing DHLs below the false-floor.
This makes it possible to do repairs with reasonable access.

Heat Sinks An M.2 SSD can consume up to 10W under
load, hence using many at the same time can potentially create
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a heat dissipation problem. It can be solved by placing heat
sinks between M.2 connectors to conductively cool them.

SSD Failures Raised and oriented vertically, SSDs are kept
out of the stronger magnetic field to avoid errors due to
induced currents.

Increasing Connector Longevity USB-C connectors
(which can physically carry PCIe) are designed for 10K-20k
plug/unplug cycles, making them a good choice for repeated
docking and undocking, compared to M.2’s 100s of cycles.

Safety Considerations DHL presents only a minor safety
concern due to carts’ speed since carts’ mass would be in
the hundreds of grams, keeping their embodied energy small.
Placing the DHL beneath the false-floor would minimise the
risk of equipment damage. Additional measures can be as
simple and cheap as placing sandbags at rails’ ends.

System-level Concerns Our present API is very simple in
correspondence with the primary intended application having
limited requirements. However, in a real system, concerns such
as filesystem organisation, global consistency, reliability, etc
would come to the fore. In some ways, DHL looks like a
more limited traditional network link (with e.g. high latency),
like those used to connect poorly-connected communities. This
area of work may serve as useful inspiration for future work
on more general purpose system use cases of DHL.

VII. RELATED WORK

A. Near-Data Computing and In-Memory Processing

Memory bottlenecks are exacerbated when PB-scale
datasets must be distributed. Caribou [57] is a distributed
storage layer that offloads portions of database operations to
the storage nodes themselves for efficiency and performance.
Cho et al. [36] propose Near Data Accelerators (NDA) to
optimise the storage locality of memory, improving power
and performance. Mutlu et al. [74] seek to eliminate memory
bottlenecks by performing Processing in Memory (PIM).

B. Moving large quantities of data

Moving large datasets reduces the bandwidth available for
other applications while consuming significant power. 60GHz
wireless networks could offer a dedicated, power-efficient
data centre network [95]. Physically moving data is often
branded Sneakernet [50], which originated decades ago. One
incarnation sent drives overnight through postal service. Cloud
providers offer a similar product: AWS Snowmobile [10]
physically ships customer data on hard drive storage via a
“45-foot-long ruggedised shipping container pulled by a semi-
trailer truck”, shipping over 100 PB of data in only up to a
few weeks’ time. Additionally, there are solutions to physically
move 4xSSDs inside a removable 5.25” drive [7], easing
smaller scale data transport. All of these methods limit energy
savings due to friction-limited movement.

C. Energy reductions in data centres

Energy consumption is a primary concern in data centres
and many proposals orthogonal to DHL have been made.
VMT [91] is a thermal aware job placement technique that

reduces peak cooling load up to 12.8%. Popoola et al. find
the most energy-optimal switch-centric DCN topologies, pre-
ferring fat trees [79]. Fuchs et al. [43] propose an accelerator
layer and specialised storage layer to eliminate the occurrence
of re-computations, showing savings of 50% in energy and
68% in EDP.

D. Network improvements

Optical networks create overhead when routing due to the
lack of optical switching. There are proposals to address this:
A low power, error-free 100-Gb/s optical packet switching
method [28]; Hybrid switches with TCP congestion con-
trol [35]; New architectures for fast optical flow control [35];
Optical interconnects for rack-scale computing [103]. Addi-
tionally, energy consumption could be reduced by turning
on/off network links [55]; switching on/off individual optical
fibres [24]; using existing Ethernet mechanisms to reduce the
speed when possible [87] and a policy to control them [86];
proposing better network topologies [37]. DHL sidesteps many
bandwidth and power consumption issues, demonstrating sig-
nificant performance improvements in terms of GB/Joule.

E. Optimisation of Distributed ML Models

Different proposals have been made to reduce and optimize
for the demands of modern machine learning applications:
Deep Gradient Compression (DGC) [67] reduces communi-
cation bandwidth in large-scale distributed training. Zhang et
al. [104] introduce an efficient communication architecture,
Poseidon, that exploits layered model structures by over-
lapping communication and computation to reduce bursty
network communication. Khani et al. [62] propose custom
optical network interconnects to build high-bandwidth ML
training clusters that improve training time up to 9.1×.
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