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Abstract—Chips with tens of billions of transistors have become
today’s norm. These designs are straining our electronic design
automation tools throughout the design process, requiring ever
more computational resources. In many tools, parallelisation has
improved both latency and throughput for the designer’s benefit.
However, tools largely remain restricted to a single machine and
in the case of RTL simulation, we believe that this leaves much
potential performance on the table.

We introduce Metro-MPI to improve RTL simulation for
modern 10 billion transistor-scale chips. Metro-MPI exploits the
natural boundaries present in chip designs to partition RTL
simulations and leverage High Performance Computing (HPC)
techniques to extract parallelism. For chip designs that scale
in size by exploiting latency-insensitive interfaces like networks-
on-chip and AXI, Metro-MPI offers a new paradigm for RTL
simulation scalability. Our implementation of Metro-MPI in Open-
Piton+Ariane delivers 2.7 MIPS of RTL simulation throughput for
the first time on a design with more than 10 billion transistors and
1,024 Linux-capable cores, opening new avenues for distributed
RTL simulation of emerging system-on-chip designs. Compared to
sequential and multithreaded RTL simulations of smaller designs,
Metro-MPI achieves up to 135.98× and 9.29× speedups. Similarly,
for a representative regression run, Metro-MPI reduces energy
consumption by up to 2.53× and 2.91×.

Index Terms—RTL Simulation, MPI, Network-on-Chip,
Verilator

I. INTRODUCTION

Designing today’s 10 billion transistor-scale chips is only
getting more difficult and expensive as their scale grows, with
little improvement in EDA tool performance. Such performance
stagnation has been seen in Register-Transfer Level (RTL)
simulation, which is crucial for accurate modelling. Blocks
of reasonable scale (10M-100M transistors) often see RTL
simulation throughput of only a few thousands of cycles per
second (CPS). This means that simulating a core running at 1
GHz with 1 instruction/cycle for 1 second of execution would
require over 10 days of simulation time. With poor scaling as
designs grow, RTL simulation of full chips has become too
costly and is reserved for the final steps in the design process.

To demonstrate this, we simulate large OpenPiton manycore
chips [6] with Verilator [20]. Figure 1 shows that increasing the
number of simulated cores causes a throughput degradation. For
each chip size, we show the instructions per second or IPS (left,
blue), CPS (right, green), and compilation time (black line). The
CPS decreases as a larger design requires more simulation work
per cycle. As this trend continues with size, it is not viable to
simulate very large designs, especially since compilation time
increases super-linearly with core count, rapidly becoming a
bottleneck. To democratise the design of such large systems-
on-chip (SoCs) we need a better solution.
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Fig. 1: OpenPiton Verilator Simulation Performance.

Ideally, each stage of our EDA flow would perfectly par-
allelise independent of chip size, but in reality there are
restrictions. Our key insight is to exploit modern SoCs’
natural boundaries (e.g. NoCs) to partition the design and
turn RTL simulation into a distributed HPC problem. We
introduce Metro-MPI to enable fast behavioural RTL simulation
of emerging-scale chips. In Metro-MPI, each chip is simu-
lated with many independent processes, communicating via
the standard Message Passing Interface (MPI) [12] distributed
computing runtime. This enables us to scale simulation time
and throughput by exploiting more processes and compute
nodes as our chips grow. Metro-MPI requires minimal design
changes to enable parallel RTL simulation across multiple
nodes in an HPC or cloud infrastructure.

Metro-MPI can be used through the whole design process,
starting with early-stage designs, unlike specialised hardware
used to emulate RTL models such as FPGAs and hardware
emulators. Such tools usually require a mature, late-stage
design and a substantial financial investment in the case of
hardware emulators. With its fast compilation times, Metro-
MPI can further complement the use of hardware emulation in
later stages of the design process.

Our main contributions are:
• A general methodology, exploiting the natural boundaries

found in modern chips, to parallelise RTL simulation using
MPI, applied to both Verilator and a commercial simulator.

• Speedup compared to sequential and multithreaded RTL
simulations of up to 135.98× and 9.29×, respectively.

• Exceptional scaling of RTL simulation to tens of nodes,
reaching 2.7 MIPS for a 10B+ transistor, 1,024-core chip.

• Energy reduction of 2.53× for a representative regression.
• Open-source release at https://github.com/metro-mpi.

https://github.com/metro-mpi


II. METRO-MPI FRAMEWORK

Recent manycore chips (e.g. Graviton 3 [1] and ET-SoC-
1 [11]) feature 10s-1000s of cores connected via NoCs to enable
core count scaling. A tile may contain cores, accelerators, etc.,
and those heterogeneous tiles are replicated many times. Each
tile is connected to adjacent tiles by NoCs that send simple
messages. However, even with NoCs to improve scalability,
simulating designs is still challenging, requiring an increasing
amount of computation per simulated cycle as the design grows.
Ideally, we would like to simulate a design with thousands of
cores at the simulation speed of a single-core design.

To make simulation manageable, parallelisation is needed.
We introduce Metro-MPI, a generic methodology to distribute
RTL simulation and unlock SoCs’ inherent parallelism. We
leverage best practices in parallel programming from HPC
to partition well-defined blocks within designs into isolated
simulation processes that communicate via MPI message pass-
ing. Metro-MPI works particularly well with replicated blocks
of comparable size, such as manycores with NoCs. For each
cycle, each process simulates in parallel then synchronises
with its neighbours. This is enabled by the latency-insensitive
interfaces [22] throughout the design in the form of NoCs,
AXI, etc.. As a use case, we adopt the OpenPiton+Ariane
tiled manycore [5], [6], which connects tiles via NoCs, while
peripherals and accelerators use NoCs or AXI. Figure 2 shows
an example of Metro-MPI partitioning an OpenPiton SoC’s tiles
into groups of simulation processes plus individual processes
for the chipset, the bootrom, and a MIAOW GPGPU [4].

A. Integration Methodology

Metro-MPI replaces the wires between blocks with MPI
messages. We aim to pass only a single round of messages per
simulated cycle to reduce overhead. As we carry signal wires
through MPI messages (rather than e.g. higher-level NoC mes-
sages), simulation processes run in lockstep. To ensure that the
selected wires are suitable and to avoid combinational loops, we
identify their wire sorts [10]. The to-sync and from-sync
sorts (indicating an input/output port connects to a register or
memory) guarantee that only a single message needs to be
sent per cycle. Wires with the to-port or from-port sorts
(indicating the input/output port combinationally connects to
another input/output port) must be understood by the designer
to avoid loops or feedbacks (e.g. valid-ready interfaces where
valid depends on ready or vice versa). If there are issues,
multiple rounds of messages and circuit evaluation could ensure
that the simulation reaches a stable, fixed point each cycle.
Such dependencies are uncommon for composable latency-
insensitive interfaces. For our NoCs and AXI, only a single
round of unidirectional messages is needed. With this general-
ity, Metro-MPI can be applied to arbitrary hardware designs,
provided that the interfaces are understood. We focus on NoCs
and AXI, but other latency-insensitive interfaces are easy to
target, and many common interfaces are usable unmodified.

Metro-MPI uses SystemVerilog Direct Programming Inter-
face (DPI) to make calls like MPI_Send and MPI_Recv for
tile-to-tile communication. MPI requires that the simulation
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Fig. 2: Metro-MPI in a Heterogeneous Design.
binary is created using the mpic++ compiler (in addition to
an existing compiler like gcc or icc) and so Metro-MPI sup-
ports compiled code SystemVerilog simulators. We demonstrate
Metro-MPI using Verilator and a commercial simulator, which
are supported differently:

1) Metro-MPI in Verilator: Verilator differs from most
SystemVerilog simulators in using C++ testbenches, to which
we insert MPI calls at clock generation and evaluation. After
calling eval() on the rising edge and the design reaching
a fixed point, we send all NoC messages, then receive all
NoC messages (in the same order), ensuring lockstep synchro-
nisation. We then call eval() again to propagate received
messages into the simulation. Verilator is optimised to avoid
re-evaluation if wires have not changed and empirically we
achieve significant speedups.

2) Metro-MPI in SystemVerilog-compliant Simulators: For
other simulators, we add our DPI/MPI calls to the SystemVer-
ilog testbench. We add a delay after the clock edge to ensure the
design has reached a fixed point before sending and receiving
the MPI messages. The simulator automatically evaluates the
design according to the language’s simulation timing model
without need for manual eval() calls.

B. NoC-based Partitioning

For our case study, partitions are connected through NoC
routers’ input and output signals which we turn into Metro-
MPI messages. In OpenPiton, each tile-tile connection has 3
NoCs in each direction, and each NoC has three signals:

• Valid: Current data is valid on this cycle (1 bit).
• Data: Message itself sent over the NoC (64 bits).
• Yummy: NoC credit return to sender (1 bit).
All signals between two tiles can be grouped and sent using

a single MPI message. Empirically, we see roughly a 10%
improvement on a single node (regardless of design size) with
this grouping, compared to partial or no grouping. We use the
best configuration for our evaluation.

Since the SoC is distributed into independent processes,
instead of Verilog $finish, the chipset notifies the tiles of
simulation finish using MPI_Bcast. The chipset triggers this
on a store to a special memory address (also used by OpenPiton
on FPGA). To avoid messaging every cycle, the chipset and
tiles communicate at a configurable interval.

C. Multi-Tile Granule

Large designs can have hundreds of tiles so partitioning them
using a single tile per MPI process (a “single-tile granule” or
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(a) Simulation time speedup over sequential.

1x1 2x2 4x4 8x8 16x16 32x32
NoC Size

100

101

102

103

104

K
ilo

In
st

ru
ct

io
ns

/s
ec

0.17

3.26

30.23

190.49

744.77

2698.12

(b) Actual KIPS scalability.

1x1 2x2 4x4 8x8 16x16 32x32
NoC Size

0

1

2

3

4

5

6

7

8

K
ilo

C
yc

le
s/

se
c

1.8

2.7

4.7

6.1
6.9 6.7

(c) Actual cycles per second scalability.

Fig. 3: Single-tile granule Metro-MPI performance results using Verilator: (a) simulation time speedup normalised to the 1× 1
sequential design; (b) simulated KIPS and (c) simulated cycles per second with NoC designs of up to 1,024 tiles (32× 32).

STG) requires many HPC nodes (with good connectivity to
reduce MPI costs). We created multi-tile granules (MTGs) with
multiple tiles in one MPI process, to enable scaling with fewer
resources. Figure 2 features a 4 × 4 chip divided into 2 × 2
MTGs, which reduces the required number of MPI processes
as each process simulates four tiles. As the granule grows,
so does the amount of computation for an MPI process per
simulated cycle. The advantage is lower communication costs
from all intra-granule communication happening locally and the
grouping of all signals between pairs of processes into a single
MPI message. We evaluate MTGs in Section IV-E.

III. EXPERIMENTAL SETUP

We use an HPC system with nodes that contain 2 sockets
of Intel Xeon Platinum 8160 CPUs with 24 cores and 32MB
LLC each, running at 2.10GHz. The nodes have 96GB DDR4-
2667 of main memory (2GB per core) and are connected via a
100Gbit/s Intel Omni-Path HFI Silicon to other nodes.

We evaluate simulations across SoC sizes using a 2D mesh
NoC topology, from 1 to 1,024 cores: 1×1, 2×1, 2×2, 4×2,
4×4, 8×4, 8×8, 16×8, 16×16, 32×16, and 32×32. We use
an OpenPiton development version dated after release 13 and
Ariane v4.2. To support 1,024 cores, we modified OpenPiton’s
L2 cache to increase the coherence share vector to 1,024 bits.
Using 12nm synthesis technology, we conservatively estimate
13 million transistors per tile with a 128 bit share vector
(not adapted for 1,024 tiles and thus considerably smaller).
Therefore, our 1,024 tile chip would have significantly more
than 10 billion transistors. Each Ariane core runs a program
passing a token using atomic operations to synchronise and
communicate with its adjacent cores (i.e. core+1 and core-1).

We first assign one process per tile (STG Metro-MPI) and
one for the chipset (with no GPGPU). We use the minimum
number of nodes to accommodate all required MPI processes
(i.e. 1 node for NoCs up to 8× 4, and up to 22 nodes for 32×
32). When using more than 1 node, we balance the number of
processes per node to maintain uniform parallel execution and
better exploit the available last-level cache. We do not manually
place processes and leave such optimisations for future work.

We use Verilator v4.034, GCC v10.1 and Intel MPI v2017.7.
Our profiling with perf v5.4.133 and Intel VTune v2019.4
(Sec. IV-A) led us to identify instruction cache bottlenecks
and thus change our compiler flags. For best performance, we
compile simulation models with "-Os". Compilation time is 5

TABLE I: Verilator simulation profiling results.

NoC Size
1x1 2x2 4x4 8x4 8x8

ITLB MPKI Sequential 0.03 0.54 1.11 1.06 1.14
Metro-MPI 0.01 0.01 0.01 0.12 0.39

ICache MPKI Sequential 11.71 8.69 17.14 19.16 29.30
Metro-MPI 7.99 9.44 10.56 9.03 9.52

IPC Sequential 1.05 0.87 0.55 0.53 0.34
Metro-MPI 1.31 1.31 1.37 1.18 0.96

minutes to 69 hours (1 to 64 cores) for the unmodified design,
and 3 minutes to 2 hours (1 to 1,024 cores) for Metro-MPI.

IV. EVALUATION

We evaluate Metro-MPI with STGs (Sec. IV-A and IV-B),
compare to Verilator’s multithreading (Sec. IV-C), and evaluate
a commercial simulator (Sec. IV-D). Sec. IV-E introduces
MTGs. Sec. IV-G shows partitioning of heterogeneous SoCs.

A. Simulation Time Speedup

Figure 3a shows the speedup of STG Metro-MPI from 1×1
to 8 × 8 (1 tile to 64 tiles) normalised to sequential Verilator.
We evaluated the sequential design only up to 64 tiles due to its
long compilation times (69+ hours for 8×8). We show Metro-
MPI speedup normalised to sequential simulation runtime on
the y-axis and the chip dimensions on the x-axis. We observe
a 1.2× speedup for 1×1, near-linear speedups up to 4×2, and
super-linear speedups beyond, reaching 135.9× with 64 tiles.

To understand these super-linear speedups we profiled both
settings. Table I shows instruction cache (ICache) and TLB
(ITLB) misses per kilo instruction (MPKI) and instructions
per cycle (IPC) for sequential and STG Metro-MPI simulations
over a subset of our configurations. The sequential design has
high ICache and ITLB MPKIs that increase significantly with
chip size, reaching 1.14 ITLB MPKI and 29.30 ICache MPKI
for 64 tiles, while IPC decreases by 3× from 1.05 to 0.34. This
indicates a clear bottleneck in the host’s front-end. This can be
explained by the code generation, which we find has very long
functions and many hard-to-predict branches. The sequential
binary starts at 2MB for 1× 1 and grows to 89MB for 8× 8.

In contrast, Metro-MPI has significantly lower ICache and
ITLB MPKIs which do not increase significantly with chip
size; ITLB MPKI starts to increase at 8× 8 and ICache MPKI
remains relatively stable. This is due to the STG partitioning:
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TABLE II: Metro-MPI speedup versus Verilator multithreading.

Speedup Comparison 4x4 8x4

Multithreading vs sequential 4.2 5.5
Metro-MPI vs sequential 23.7 51.1
Metro-MPI vs multithreading 5.64 9.29

the design has a single tile in each process. As such, the Metro-
MPI tile binary has a constant size of 3MB regardless of chip
size. We also see that 1 × 1 Metro-MPI has better IPC (1.31)
than sequential (1.05), in line with the speedup in Figure 3a.
IPC drops somewhat with size but only by 26.7% at 64 tiles.

Our findings are confirmed by a recent paper [7] describing
Verilator’s conversion of core logic into long C++ files with low
code reusability. With Metro-MPI we can alleviate the ICache
and ITLB problems that come with RTL simulation of large
designs, giving super-linear speedups on scalable HPC systems.

B. Throughput Scalability

Figure 3b shows throughput scalability in KIPS for STG
Metro-MPI on the y-axis (log scale) and chip dimensions on
the x-axis for up to 1,024 tiles (32×32). We obtain throughputs
from 0.17 KIPS for 1×1 to 2.7 MIPS for 32×32. This confirms
that Metro-MPI scales well, reaching the milestone of MIPS-
range RTL simulation speeds, which is within 10× of high-level
C++ manycore simulators [13].

Figure 3c shows scalability in CPS on the y-axis and chip
dimensions on the x-axis. We achieve 1750 CPS for 1 × 1 to
close to 7000 CPS for 16 × 16. For 32 × 32, we see a slight
decrease in throughput, which we attribute to MPI communica-
tion cost at 22 nodes. Comparing to sequential (Fig. 1), we see
that Metro-MPI scales significantly better. On the 8 × 8 NoC
we see 50.5 CPS for sequential versus 6128 CPS for Metro-
MPI. With large designs, Metro-MPI not only increases KIPS
throughput, but also maintains CPS throughput.

C. Comparison With Multithreading

We compare to Verilator’s automatic multithreading, re-
stricting Metro-MPI to a single node. Table II shows the
simulation time speedup with multithreaded Verilator (thread
count matching the design’s core count) and Metro-MPI over
sequential Verilator. We use 4×4 and 8×4 designs, which are
the two largest to fit on one HPC node. We achieve moderate
speedups with Verilator’s multithreading, 4.2× and 5.5× for
4×4 and 8×4, respectively. Metro-MPI is significantly better,
even improving over Verilator’s multithreading by 5.64× and
9.29× for 4× 4 and 8× 4, respectively. In addition, Verilator’s
multithreading cannot scale to multiple nodes, and is thus
constrained to the tens of cores typical for a single node.

D. Commercial Simulator Performance

To demonstrate its generality in improving simulation per-
formance, we also evaluated Metro-MPI using a “Big 3”
commercial simulator. Due to licensing limitations, we ran on
a single node 16 core (32 threads) Intel Xeon Gold 6226R
with 96GB of DDR4 DRAM instead of the HPC cluster, which
limited scaling. Table III shows the speedup improvement in
simulation time, CPS, and IPS that Metro-MPI can bring with

TABLE III: Metro-MPI scaling with a commercial simulator.

Speedups 1x1 2x1 2x2 4x2 4x4 8x4

Simulation time 0.93 1.54 3.20 6.17 8.44 7.81
CPS 0.91 1.26 2.73 5.15 7.08 6.75
IPS 1.41 1.36 2.82 5.36 7.35 6.90
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Fig. 4: Communication/Compute Ratios for up to 1,024 tiles
(32×32). With STGs (1x1) and with MTGs of 2×1 and 2×2.

the commercial simulator. All three metrics show very good
scaling up to the core count of the machine (16 simulated
cores + 1 simulated chipset on 16 physical cores) with a
dropoff thereafter. These results are very promising, showing
that Metro-MPI can provide similar performance improvements
across different simulators.

E. Metro-MPI with Multi-Tile Granule

For instances where the available computational resources
cannot fit the required number of processes, we explore Metro-
MPI with MTGs. First, we study STG Metro-MPI to determine
the ratio of computation to MPI communication. Then, we
evaluate the performance and efficiency of MTGs.

1) MPI Communication Overhead: Moving from a sequen-
tial simulation to a parallel one adds the cost of inter-process
communication, usually a non-negligible aspect of scaling any
application. Figure 4 shows the ratio of simulation time used for
computation (in blue) to MPI communication (in green) when
scaling STG Metro-MPI from one node to multiple nodes. We
also distinguish between the time spent sending MPI messages
(striped green) and receiving MPI messages (plain green).

We see the MPI communication overhead become a signifi-
cant portion of simulation time as the design size grows. When
simulating a single tile (1 × 1), the MPI overhead is about
25%. For 4 × 4, we observe that it already dominates with
respect to the compute portion of the simulation. The overhead
plateaus for large configurations, reach 71% for 32×32, which
uses 22 compute nodes. As the number of nodes increases, this
behaviour is expected with lockstep communication.

When looking at the division of the MPI overhead, receive
dominates over send. This is because sending a message is
asynchronous, while waiting for a message is synchronous (to
ensure a granule has received all incoming messages for the
given cycle). This is a limitation introduced by simulating
partitions in lockstep.
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TABLE IV: Multi-tile Metro-MPI performance results using
Verilator: (i) simulation time slowdown and (ii) simulated
KIPS per host core used, both normalised to the 1 × 1 STG
configuration; and (iii) actual simulated KIPS.

Metrics NoC Configs
16x16 32x16 32x32

1x1 2x1 2x2 1x1 2x1 2x2 1x1 2x1 2x2

Slowdown 1.0 1.79 3.39 1.0 1.69 3.19 1.0 1.77 2.55
KIPS/core 1.0 1.11 1.16 1.0 1.18 1.25 1.0 1.13 1.56
KIPS 745 414 220 1318 780 413 2698 1528 1057

2) Multi-Tile MPI Overhead: Figure 4 shows the same MPI
overhead study with three MTGs (1 × 1, 2 × 1 and 2 × 2)
for the three largest chips (16 × 16, 32 × 16, and 32 × 32).
As the MTG grows, the computation ratio increases, since
each MPI process is simulating more tiles per cycle. The
computation part (blue) increases and reaches around 50% for
the 2 × 1 granule, and up to 70% for the 2 × 2 granule.
The communication component (green) is also affected by the
MTG, decreasing as the number of tiles in the granule grows.
The communication ratio spent on MPI Receive (plain green)
decreases substantially. For 16× 16: from almost 50% in STG
1×1, to around 30% in MTG 2×1, and finally below 20% for
the 2 × 2 MTG. The time spent on MPI Send also decreases
from 20% to 11%. Other chip sizes follow similar trends.

We can conclude that MTGs alleviate MPI overhead for large
chips. Depending on the HPC infrastructure’s network, these
overheads can represent a large portion of the simulation time.
MTGs thus enable large chip simulations with fewer nodes.

3) Multi-Tile Efficiency Evaluation: To determine the ef-
ficiency of MTGs in Metro-MPI we evaluate simulation
time (seconds), KIPS, and efficiency, across three chip sizes:
16× 16, 32× 16, and 32× 32, and use three granules of size
1 × 1, 2 × 1, and 2 × 2. Table IV presents simulation time
slowdowns normalised to the 1×1 MTG for each chip size. We
observe that the simulation time slowdown for the 2×1 MTG is
similar for all chip sizes: between 1.69× and 1.79×. However,
we can see that for the 2× 2 MTG there is less slowdown as
the chip grows in size: from 3.39× for 16 × 16 to 2.55× for
32× 32. As expected, employing MTGs has a negative impact
on simulation time, since more work is done per MPI process.
However, the slowdown is not linear with respect to the granule
size, which means simulations are more efficient with respect
to the computational resources they employ.

Table IV also presents an efficiency metric: KIPS (simulation
speed) divided by host cores (MPI processes, computational
resources) used. Results are normalised to the STG for each
chip size. When using a MTG of 2 × 1 we obtain efficiency
improvements of 1.11×, 1.18×, and 1.13× for chip sizes 16×
16, 32× 16, and 32× 32, respectively. Using the largest MTG
of 2 × 2 yields even higher efficiencies, with up to 1.56× for
the 32×32 NoC. These improvements in simulation efficiency
stem from the MPI communication overhead reductions shown
in Figure 4, and prove that MTGs are useful both to lift the
constraints imposed by a given HPC infrastructure and to run
multiple simulations in parallel with better overall throughput.

Finally, Table IV shows simulated KIPS. These results follow
the same trends already discussed for simulation time slow-
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down, validating previous observations.

F. Energy and Power Analysis
Figure 5 shows execution time (seconds), total energy (Kilo-

Joules) and average power (Watts) for sequential, automatic
multithreading by Verilator, and Metro-MPI configurations
when executing a fixed amount of work, specifically 32 sim-
ulations of the 8 × 4 NoC. We have also fixed the amount of
computational resources to one node of our HPC infrastruc-
ture described in Section III. In this manner, this experiment
resembles the problem of running a regression which usually
has a fixed amount of work with a fixed amount of resources.
Sequential executes 32 individual sequential simulations in
parallel on different cores; for multithreading we have evaluated
different thread counts, fitting as many simulations as possible,
and show the configuration that yields the best results; finally,
Metro-MPI parallelises each individual simulation using STG
processes, running one simulation at a time.

In terms of execution time Metro-MPI runs faster than
sequential and multithreading by 2.07× and 2.59× respec-
tively. In the case of total energy consumption, Metro-MPI
consumes 2.53× and 2.90× less energy against sequential
and multithreading. Finally, comparing average power, Metro-
MPI requires 1.22× and 1.12× less power than sequential and
multithreading. We can conclude Metro-MPI is a better choice
for running regressions, saving time and energy.

G. Metro-MPI Heterogeneity
Our methodology is general enough for heterogeneous de-

signs. Figure 2 shows a prototype we have built where Metro-
MPI is used with different protocols and the tiles could be
simulated using either STGs or MTGs. This OpenPiton/BYOC
design has heterogeneous tiles containing different cores or
accelerators connected via the Transaction-Response Inter-
face [5] and protocols like AXI, one of the most common
communication protocols. In our simulation, the chip employs
homogeneous tiles with STGs and the chipset has devices in
several independent processes: a main process with UART,
DRAM controller, and debug units; and two additional pro-
cesses independently connected through AXI over Metro-MPI,
one for a MIAOW GPGPU [4] and one for the bootrom.

Heterogeneity of Simulators: The generic connection
through MPI offers the ability to have a parallel simulation
with different hardware modules compiled in different simu-
lators. Such heterogeneous simulations remove difficulties that
proprietary simulator licenses can create.
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V. RELATED WORK

State-of-the-art approaches to reduce simulation time are
mostly focused on high-level simulators and make a trade-
off between speed and accuracy. Such solutions rely either
on sampling [14], [19], [23] or parallelisation [3], [13], [18]
techniques to reduce the number of instructions to simulate.
They are far from the cycle accuracy of RTL, making them
suitable for other types of experiments: e.g. fast application
performance estimations in computer architecture.

In the case of RTL simulations, there are proposals that use
MPI, OpenMP or a custom simulator to accelerate simulation.
Tariq et al. [2] make use of domain partitioning and OpenMP,
obtaining up to a 3.3× simulation time speedup. Essent [8]
proposes a new simulator that uses an intermediate language
for hardware: FIRRTL [15], which accelerates simulations with
practical techniques to reuse and avoid doing extra work.
Verilator can automatically partition a design with pthreads,
enabling multithreaded simulations out-of-the-box. These pro-
posals are mostly single-node and thus largely orthogonal,
meaning they could be adopted alongside Metro-MPI.

PVSim [17] uses partitioning and an optimistic asynchronous
simulation algorithm for fine-grained parallel HDL simulation,
delivering up to 4.64× using 8 processes. Though both use
MPI, Metro-MPI relies on a manual partitioning, exploiting
today’s chips’ structure (which are more than 100× larger than
when PVSim was designed) to identify boundaries. The design
is then simulated in lockstep, with large enough partitions
that communication time does not dominate the simulation
performance. To the best of our knowledge, PVSim is not
publicly available, making direct comparison impossible.

Regarding improving simulations using FPGAs: FAST [9]
is a hybrid approach (CPU+FPGA), RAMP Gold [21] speeds
up manycore simulation up to 64 cores, and Firesim [16] is
a simulation platform that uses Amazon EC2 F1 instances
to provide usability and avoid big investments in hardware
equipment. These are very useful for late-stage hardware design
but are more tedious to use and modify, often requiring long
FPGA build times, and have limitations with the design’s size.

VI. CONCLUSIONS

We have demonstrated the value of HPC techniques for RTL
simulation. For the first time, we obtain 2.7 MIPS on a 10B+
transistor (1,024 core) scale RTL simulation, something only
available before on high-level software simulators or FPGA
emulators. Making use of MPI and the natural partitioning of
hardware blocks in a design, we obtain a remarkable speedup
over sequential Verilator simulation of up to 135.98× on
an 8 × 8 chip. We also compared Metro-MPI to Verilator’s
automatic multithreaded partitioning with a 9.29× speedup on
an 8 × 4 chip. Since chips with such large core counts are
already commercially available, Metro-MPI is a solution for
high-speed, large-scale RTL simulation in practice. This work
is open-source, found at: https://github.com/metro-mpi.
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