
DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 79

OpenPiton: An Open Source
Hardware Platform
For Your Research
By Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov,
Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl, and David Wentzlaff

DOI:10.1145/3366343

Abstract
Industry is building larger, more complex, manycore pro-
cessors on the back of strong institutional knowledge,
but academic projects face difficulties in replicating that
scale. To alleviate these difficulties and to develop and
share knowledge, the community needs open architec-
ture frameworks for simulation, chip design, and software
exploration that support extensibility, scalability, and con-
figurability, alongside an established base of verification
tools and supported software. In this article, we present
OpenPiton, an open source framework for building scal-
able architecture research prototypes from one core to 500
million cores. OpenPiton is the world’s first open source,
general-purpose, multithreaded manycore processor, and
framework. OpenPiton is highly configurable, providing a
rich design space spanning a variety of hardware parame-
ters that researchers can change. OpenPiton designs can be
emulated on FPGAs, where they can run full-stack multiuser
Debian Linux. OpenPiton is designed to scale to very large
core fabrics, enabling researchers to measure operating sys-
tem, compiler, and software scalability. The mature code-
base reflects the complexity of an industrial-grade design
and provides the necessary scripts to build new chips, mak-
ing OpenPiton a natural choice for computer-aided design
(CAD) research. OpenPiton has been validated with a 25-core
chip prototype, named Piton, and is bolstered by a validation
suite that has thousands of tests, providing an environment
to test new hardware designs while verifying the correctness
of the whole system. OpenPiton is being actively used in
research both internally to Princeton and in the wider com-
munity, as well as being adopted in education, industry, and
government settings.

1. INTRODUCTION
Building processors for academic research purposes can be
a risky proposition. Particularly as processors have grown in
size, and with the focus on multicore and manycore proces-
sors,17, 19, 20, 21, 14, 22, 6 the number of potential points of failure
in chip fabrication has increased drastically. To combat
this, the community needs well-tested, open-source, scal-
able frameworks that they can rely on as baselines to work
from and compare against. To reduce “academic time-to-
publication”, these frameworks must provide robust software
tools, mature full-system software stacks, rely on industry-
standard languages, and provide thorough test suites.
Additionally, to support research in a broad variety of fields,

The original version of this paper is entitled “OpenPiton:
An Open Source Manycore Research Framework” and was
published in Proceedings of ASPLOS 2016, Atlanta, GA,
April 2–6, 2016, ACM.

these frameworks must be highly configurable, be synthesiz-
able to FPGA and ASIC for prototyping purposes, and pro-
vide the basis for others to tape-out (manufacture) their own,
modified academic chips. Building and supporting such an
infrastructure is a major undertaking which has prevented
such prior designs. Our framework, OpenPiton, attacks this
challenge and provides all of these features and more.

OpenPiton is the world’s first open source, general-
purpose, multithreaded manycore processor. OpenPiton is
scalable and portable; the architecture supports address-
ing for up to 500-million cores, supports shared memory
both within a chip and across multiple chips, and has been
designed to easily enable high performance 1000+ core
microprocessors and beyond. The design is implemented
in industry-standard Verilog HDL and does not require
the use of any new languages. OpenPiton enables research
from the small to the large with demonstrated implemen-
tations from the slimmed-down, single-core PicoPiton,
which is emulated on a $160 Xilinx Artix 7 at 29.5MHz,
up to the 25-core Piton processor which targeted a 1GHz
operating point and was recently validated and thoroughly
characterized.12, 13

The OpenPiton platform shown in Figure 1 is a modern,
tiled, manycore design consisting of a 64-bit architecture
using the mature SPARC v9 ISA with P-Mesh: our scalable
cache coherence protocol and network on chip (NoC).
OpenPiton builds upon the industry-hardened, open-source
OpenSPARC T115, 1, 18 core, but sports a completely scratch-
built uncore (caches, cache-coherence protocol, NoCs,
NoC-based I/O bridges, etc), a new and modern simulation
framework, configurable and portable FPGA scripts, a com-
plete set of scripts enabling synthesis and implementation
of ready-to-manufacture chips, and full-stack multiuser
Debian Linux support. OpenPiton is available for download
at http://www.openpiton.org.

OpenPiton has been designed as a platform to enable
at-scale research. An explicit design goal of OpenPiton is
that it should be easy to use by other researchers. To sup-
port this, OpenPiton provides a high degree of integration
and configurability as shown in Table 1. Unlike many other
designs where the pieces are provided, but it is up to the

http://dx.doi.org/10.1145/3366343

80 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

research highlights

(a) (b)

P-Mesh Off-chip
routers (3)

Chip
bridge

P-Mesh XBars
(3)

DRAM SDHC I/O

L2 Cache slice
+

Directory cache

P-Mesh
routers

(3)

L1.5 Cache

CCX Arbiter

FPU

Modified
OpenSPARC T1

core

MITTS
(Traffic shaper)

Figure 2. Architecture of (a) a tile and (b) chipset.

option or configuration file. OpenPiton is easy to extend;
the presence of a well documented core, a well documented
coherence protocol, and an easy-to-interface NoC make
adding research features straightforward. Research exten-
sions to OpenPiton that have already been built include
several novel memory system explorations, an Oblivious
RAM controller, and a new in-core thread scheduler. The
validated and mature ISA and software ecosystem sup-
port OS and compiler research. The release of OpenPiton’s
scripts for FPGA emulation and chip manufacture make
it easy for others to port to new FPGAs or semiconduc-
tor process technologies. In particular, this enables CAD
researchers who need large netlists to evaluate their algo-
rithms at-scale.

2. THE OPENPITON PLATFORM
OpenPiton is a tiled, manycore architecture, as shown in
Figure 1. It is designed to be scalable, both intra-chip and
inter-chip, using the P-Mesh cache coherence system.

Intra-chip, tiles are connected via three P-Mesh networks
on-chip (NoCs) in a scalable 2D mesh topology (by default).
The NoC router address space supports scaling up to 256
tiles in each dimension within a single OpenPiton chip (64K
cores/chip).

For inter-chip communication, the chip bridge extends
the three NoCs off-chip, connecting the tile array (through
the tile in the upper-left) to off-chip logic (chipset). The chip-
set may be implemented on an FPGA, as a standalone chip,
or integrated into an OpenPiton chip.

The extension of the P-Mesh NoCs off-chip allows the
seamless connection of multiple OpenPiton chips to cre-
ate a larger system, as shown in Figure 1. OpenPiton’s
cache-coherence extends off-chip as well, enabling shared-
memory across multiple chips, for the study of even larger
shared-memory manycore systems.

2.1. Tile
The architecture of a tile is shown in Figure 2a. A tile consists
of a core, an L1.5 cache, an L2 cache, a floating-point unit (FPU),
a CPU-Cache Crossbar (CCX) arbiter, a Memory Inter-arrival
Time Traffic Shaper (MITTS), and three P-Mesh NoC routers.

The L2 and L1.5 caches connect directly to all three NoC
routers, and all messages entering and leaving the tile tra-
verse these interfaces. The CCX is the crossbar interface used

user to compose them together, OpenPiton is designed with
all of the components integrated into the same, easy-to-
use, build infrastructure providing push-button scalability.
Researchers can easily deploy OpenPiton’s source code, add
in modifications, and explore their novel research ideas in
the setting of a fully working system. Thousands of targeted,
high-coverage test cases are provided to enable researchers
to innovate with a safety net that ensures functionality is
maintained. OpenPiton’s open source nature also makes it
easy to release modifications and reproduce previous work
for comparison or reuse.

Rather than simply being a platform designed by com-
puter architects for use by computer architects, OpenPiton
enables researchers in other fields including operating sys-
tems (OS), security, compilers, runtime tools, systems, and
computer-aided design (CAD) tools to conduct research at-
scale. In order to enable such a wide range of applications,
OpenPiton is configurable and extensible. The number of
cores, attached I/O, size of caches, in-core parameters, and
network topology are all configurable from a command-line

 Tile

 Chip

chipset

Figure 1. OpenPiton Architecture. Multiple manycore chips are
connected together with chipset logic and networks to build large
scalable manycore systems. OpenPiton’s cache coherence protocol
extends off chip.

Table 1. Supported OpenPiton configuration options. Bold indicates
default values. (*Associativity reduced to 2-ways at smallest size).

Component Configurability options

Cores (per chip) Up to 65,536
Cores (per system) Up to 500 million
Threads per core 1/2/4
Floating-point unit Present/Absent
Stream-processing unit Present/Absent
TLBs 8/16/32/64 entries
L1 I-cache 8*/16/32KB
L1 D-cache 4*/8/16KB
L1.5 cache Number of sets, ways (8KB, 4-way)
L2 cache (per tile) Number of sets, ways (64KB, 4-way)
Intra-chip topologies 2D mesh, crossbar
Inter-chip topologies 2D mesh, 3D mesh, crossbar, butterfly network
Bootloading SD/SDHC card, UART

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 81

Core
L1

Private
L1.5

Distributed
L2

Off-chip
memory
controller

NoC1

NoC2

NoC3

NoC2

NoC3

NoC1

CCX

Figure 3. OpenPiton’s memory hierarchy datapath.

in the OpenSPARC T1 to connect the cores, L2 cache, FPU,
I/O, etc.1 In OpenPiton, the L1.5 and FPU are connected to
the core by CCX.

2.2. Core
OpenPiton uses the open-source OpenSPARC T115 core with
modifications. This core was chosen because of its industry-
hardened design, multi-threaded capability, simplicity, and
modest silicon area requirements. Equally important, the
OpenSPARC framework has a stable code base, implements
a mature ISA with compiler and OS support, and comes with
a large test suite.

In the default configuration for OpenPiton, as used in
Piton, the number of threads is reduced from four to two
and the stream processing unit (SPU) is removed from the
core to save area. The default Translation Lookaside Buffer
(TLB) size is 16 entries but can be increased to 32 or 64, or
decreased down to 8 entries.

Additional configuration registers were added to enable
extensibility within the core. They are useful for adding
additional functionality to the core which can be configured
from software, for example enabling/disabling functional-
ity, configuring different modes of operation, etc.

2.3. Cache hierarchy
OpenPiton’s cache hierarchy is composed of three cache
levels. Each tile in OpenPiton contains private L1 and L1.5
caches and a slice of the distributed, shared L2 cache. The
data path of the cache hierarchy is shown in Figure 3.

The memory subsystem maintains cache coherence
using our coherence protocol, called P-Mesh. It adheres to
the memory consistency model used by the OpenSPARC T1.
Coherent messages between L1.5 caches and L2 caches
communicate through three NoCs, carefully designed to
ensure deadlock-free operation.

L1 caches. The L1 caches are reused from the OpenSPARC
T1 design with extensions for configurability. They are com-
posed of separate L1 instruction and L1 data caches, both
of which are write-through and 4-way set-associative. By
default, the L1 data cache is an 8KB cache and its line size
is 16-bytes. The 16KB L1 instruction cache has a 32-byte
line size.

L1.5 data cache. The L1.5 (comparable to L2 caches in
other processors) both transduces the OpenSPARC T1’s
CCX protocol to P-Mesh’s NoC coherence packet formats,
and acts as a write-back layer, caching stores from the write-
through L1 data cache. Its parameters match the L1 data
cache by default.

The L1.5 communicates to and from the core through
the CCX bus, preserved from the OpenSPARC T1. When a

memory request results in a miss, the L1.5 translates and
forwards it to the L2 through the NoC channels. Generally,
the L1.5 issues requests on NoC1, receives data on NoC2,
and writes back modified cache lines on NoC3, as shown in
Figure 3.

The L1.5 is inclusive of the L1 data cache; each can
be independently sized with independent eviction poli-
cies. For space and performance, the L1.5 does not cache
instructions–these cache lines are bypassed directly to the
L2 cache.

L2 cache. The L2 cache (comparable to a last-level L3
cache in other processors) is a distributed, write-back
cache shared by all tiles. The default cache configuration is
64KB per tile and 4-way set associativity, but both the cache
size and associativity are configurable. The cache line size
is 64 bytes, larger than the line sizes of caches lower in the
hierarchy. The integrated directory cache has 64 bits per
entry, so it can precisely keep track of up to 64 sharers by
default.

The L2 cache is inclusive of the private caches (L1 and
L1.5). Cache line way mapping between the L1.5 and the L2
is independent and is entirely subject to the replacement
policy of each cache. Since the L2 is distributed, cache lines
consecutively mapped in the L1.5 are likely to be distributed
across multiple L2 tiles (L2 tile referring to a portion of the
distributed L2 cache in a single tile).

The L2 is the point of coherence for all cacheable memory
requests. All cacheable memory operations (including atomic
operations such as compare-and-swap) are ordered, and the
L2 strictly follows this order when servicing requests. The L2
also keeps the instruction and data caches coherent, per the
OpenSPARC T1’s original design. When a line is present in
a core’s L1 instruction cache and is loaded as data, the L2
sends invalidations to the relevant instruction caches before
servicing the load.

2.4. P-Mesh network on-chip
There are three P-Mesh NoCs in an OpenPiton chip. The
NoCs provide communication between the tiles for cache
coherence, I/O, memory traffic, and inter-core interrupts.
They also route traffic destined for off-chip to the chip
bridge. The packet format contains 29 bits of core address-
ability, making it scalable up to 500 million cores.

To ensure deadlock-free operation, the L1.5 cache, L2
cache, and memory controller give different priorities to
different NoC channels; NoC3 has the highest priority, next
is NoC2, and NoC1 has the lowest priority. Thus, NoC3 will
never be blocked. In addition, all hardware components
are designed such that consuming a high priority packet is
never dependent on lower priority traffic.

Classes of coherence operations are mapped to NoCs
based on the following rules, as depicted in Figure 3:

•	 NoC1 messages are initiated by requests from the pri-
vate cache (L1.5) to the shared cache (L2).

•	 NoC2 messages are initiated by the shared cache (L2) to
the private cache (L1.5) or memory controller.

•	 NoC3 messages are responses from the private cache
(L1.5) or memory controller to the shared cache (L2).

research highlights

82 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

core instances and wires for connecting them from a single
template instance. This reduces code complexity, improves
readability, saves time when modifying the design, and
makes the creation of large meshes straightforward. The cre-
ation of large two-dimensional mesh interconnects of up
to 256 × 256 tiles is reduced to a single instantiation. The
mesh can be any rectangular configuration, and the dimen-
sions do not need to be powers of two. This was a necessary
feature for the 5 × 5 (25-core) Piton processor.

NoC topology configurability. P-Mesh provides other NoC
connection topologies than the default two-dimensional
mesh used in OpenPiton. The coherence protocol only
requires that messages are delivered in-order from one
point to another point. Since there are no inter-node order-
ing requirements, the NoC can easily be swapped out for a
crossbar, higher dimension router, or higher radix design.
Our configurable P-Mesh router can be reconfigured to a
number of topologies shown in Table 1. For intra-chip use,
OpenPiton can be configured to use a crossbar, which has
been tested with four and eight cores with no test regressions.
Other NoC research prototypes can easily be integrated and
their performance, energy, and other characteristics can be
determined through RTL, gate-level simulation, or FPGA
emulation.

Chipset configurability. The P-Mesh chipset crossbar is
configurable in the number of ports to connect the myriad
devices OpenPiton users may have. There is a single XML
file where the chipset devices and their address ranges are
specified, so connecting a new device needs only a Verilog
instantiation and an XML entry. PyHP is used to automati-
cally connect the necessary P-Mesh NoC connections and
Packet Filters.

We have so far connected a variety of devices through
P-Mesh on the chipset. These include DRAM, Ethernet,
UART, SD, SDHC, VGA, PS/2 keyboards, and even the
MIAOW open source GPU.2 These devices are driven by the
OpenPiton core and perform their own DMA where neces-
sary, routed over the chipset crossbar.

Multi-chip scalability. Similar to the on-chip mesh, PyHP
enables the generation of a network of chips starting with
the instantiation of a single chip. OpenPiton provides an
address space for up to 8192 chips, with 65,536 cores per
chip. By using the scalable P-Mesh cache coherence mecha-
nism built into OpenPiton, half-billion core systems can be
built. This configurability enables the building of large sys-
tems to test ideas at scale.

3. VALIDATION
3.1. Platform stability
One of the benefits of OpenPiton is its stability, matu-
rity, and active support. Much of this is inherited from
the OpenSPARC T1 core, which has a stable code base
and has been studied for years, allowing the code to
be reviewed and bugs fixed by many people. In addi-
tion, it implements a mature, commercial, and open
ISA, SPARC V9. This means there is existing full tool
chain support for OpenPiton, including Debian Linux OS
support, a compiler, and an assembler. SPARC is supported
on a number of OSs including Debian Linux, Oracle’s

2.5. Chipset
The chipset, shown in Figure 2b, houses the I/O, DRAM
controllers, chip bridge, P-Mesh chipset crossbar, and
P-Mesh inter-chip network routers. The chip bridge de-
multiplexes traffic from the attached chip back into the
three physical NoCs. The traffic then passes through a Packet
Filter (not shown), which modifies packet destination
addresses based on the memory address in the request
and the set of devices on the chipset. The chipset crossbar
(a modified network router) then routes the packets to their
correct destination device. If the traffic is not destined for
this chipset, it is passed to the inter-chip network rout-
ers, which route the traffic to another chipset according
to the inter-chip routing protocol. Traffic destined for the
attached chip is directed back through similar paths to the
chip bridge.

Inter-chip routing. The inter-chip network router is con-
figurable in terms of router degree, routing algorithm, buffer
size, etc. This enables flexible exploration of different router
configurations and network topologies. Currently, we have
implemented and verified crossbar, 2D mesh, 3D mesh, and
butterfly networks. Customized topologies can be explored
by reconfiguring the network routers.

2.6. Configurability
OpenPiton was designed to be a configurable platform,
making it useful for many applications. Table 1 shows
OpenPiton’s configurability options, highlighting the large
design space that it offers.

PyHP for Verilog. In order to provide low effort con-
figurability of our Verilog RTL, we make use of a Python
pre-processor, the Python Hypertext Processor (PyHP).16
PyHP was originally designed for Python dynamic web-
page generation and is akin to PHP. We have adapted it
for use with Verilog code. Parameters can be passed into
PyHP, and arbitrary Python code can be used to generate
testbenches or modules. PyHP enables extensive config-
urability beyond what is possible with Verilog generate
statements alone.

Core and cache configurability. OpenPiton’s core con-
figurability parameters are shown in Table 1. The default
parameters are shown in bold. OpenPiton preserves the
OpenSPARC T1’s ability to modify TLB sizes (from 8 to 64,
in powers of two), thread counts (from 1 to 4), and the
presence or absence of the FPU and SPU. Additionally,
OpenPiton’s L1 data and instruction caches can be dou-
bled or halved in size (associativity drops to 2 when reduc-
ing size).

Leveraging PyHP, OpenPiton provides parameterizable
memories for simulation or FPGA emulation. In addition,
custom or proprietary memories can easily be used for chip
development. This parameterization enables the configu-
rability of cache parameters. The size and associativity of
the L1.5 and L2 caches are configurable, though the line size
remains static.

Manycore scalability. PyHP also enables the creation
of scalable meshes of cores, drastically reducing the code
size and complexity in some areas adopted from the origi-
nal OpenSPARC T1. OpenPiton automatically generates all

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 83

0

20

40

60

80

100

Tile CCX arbiter FPU L1.5 L2 NoC router Core Chip bridge

C
ov

er
ag

e
pe

rc
en

ta
ge Overall score

Line

Cond

Toggle

FSM

Branch

Figure 4. Test suite coverage results by module (default OpenPiton
configuration).

Core
50.96%

L2
23.11%

L1.5
14.35%

FPU
7.74%

NoC Router0
0.70%

NoC Router1
0.83%

NoC Router2
0.86%

CCX Arbiter+
Misc. Logic

0.82%

Figure 5. Tile area breakdown for FPGA PicoPiton.

Linux for SPARC,a and OpenSolaris (and its successors).
Porting the OpenSPARC T1 hypervisor required changes
to fewer than 10 instructions, and a newer Debian Linux
distribution was modified with open source, readily
available, OpenSPARC T1-specific patches written as
part of Lockbox.3, 4

OpenPiton provides additional stability on top of what is
inherited from OpenSPARC T1. The tool flow was updated to
modern tools and ported to modern Xilinx FPGAs. OpenPiton
is also used extensively for research internal to Princeton.
This means there is active support for OpenPiton, and the
code is constantly being improved and optimized, with regu-
lar releases over the last several years. In addition, the open
sourcing of OpenPiton has strengthened its stability as a
community has built.

Validation. When designing large scale processors, sim-
ulation of the hardware design is a must. OpenPiton sup-
ports one open source and multiple commercial Verilog
simulators, which can simulate the OpenPiton design at
rates up to tens or hundreds of kilohertz. OpenPiton inher-
ited and then extended the OpenSPARC T1’s large test
suite with thousands of directed assembly tests, random-
ized assembly test generators, and tests written in C. This
includes tests for not only the core, but the memory system,
I/O, cache coherence protocol, etc. Additionally, the exten-
sions like Execution Drafting (ExecD) (Section 4.1.1) have
their own test suites. When making research modifications
to OpenPiton, the researcher can rely on an established test
suite to ensure that their modifications did not introduce
any regressions. In addition, the OpenPiton documenta-
tion details how to add new tests to validate modifications
and extend the existing test suite. Researchers can also use
our scripts to run large regressions in parallel (to tackle the
slower individual execution), automatically produce pass/
fail reports and coverage reports (as shown in Figure 4),
and run synthesis to verify that synthesis-safe Verilog has
been used. Our scripts support the widely used SLURM job
scheduler and integrate with Jenkins for continuous inte-
gration testing.

3.2. FPGA prototyping
OpenPiton can also be emulated on FPGA, which pro-
vides the opportunity to prototype the design, emulated
at tens of megahertz, to improve throughput when run-
ning our test suite or more complex code, such as an
interactive operating system. OpenPiton is actively sup-
ported on three Xilinx FPGA platforms: Artix-7 (Digilent

Nexys Video), Kintex-7 (Digilent Genesys 2) and Virtex-7
(VC707 Evaluation Board). An external port is also main-
tained for the Zynq-7000 (ZC706 Evaluation Board).
Figure 5 shows the area breakdown for a minimized
“PicoPiton” core, implemented for an Artix-7 FPGA
(Digilent Nexys 4 DDR).

OpenPiton designs have the same features as the Piton
processor, validating the feasibility of that particular design
(multicore functionality, etc.), and can include the chip
bridge to connect multiple FPGAs via an FPGA Mezzanine
Card (FMC) link. All of the FPGA prototypes feature a full
system (chip plus chipset), using the same codebase as the
chipset used to test the Piton processor.

OpenPiton on FPGA can load bare-metal programs over
a serial port and can boot full stack multiuser Debian Linux
from an SD/SDHC card. Booting Debian on the Genesys2
board running at 87.5MHz takes less than 4 minutes (and
booting to a bash shell takes just one minute), compared
to 45 minutes for the original OpenSPARC T1, which relied
on a tethered MicroBlaze for its memory and I/O requests.
This boot time improvement combined with our push-
button FPGA synthesis and implementation scripts drasti-
cally increases productivity when testing operating system
or hardware modifications.

3.3. The Princeton Piton Processor
The Piton processor prototype12, 13 was manufactured in
March 2015 on IBM’s 32 nm SOI process with a target clock
frequency of 1GHz. It features 25 tiles in a 5 × 5 mesh on a
6mm × 6mm (36 mm2) die. Each tile is two-way threaded
and includes three research projects: ExecD,11 CDR,8 and
MITTS,23 while an ORAM7 controller was included at the chip
level. The Piton processor provides validation of OpenPiton
as a research platform and shows that ideas can be taken
from inception to silicon with OpenPiton.

With Piton, we also produced the first detailed power
and energy characterization of an open source manycore
design implemented in silicon.13 This included character-
izing energy per instruction, NoC energy, voltage versus
frequency scaling, thermal characterization, and memory
system energy, among other properties. All of this was
done in our lab, running on the Piton processor with the
OpenPiton chipset implemented on FPGA. Performing
such a characterization yielded new insights into the
balance between recomputation and data movement,

a	 Linux for SPARC is hosted at https://oss.oracle.com/projects/linux-sparc/

research highlights

84 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

3.4. Synthesis and back-end support
OpenPiton provides scripts to aid in synthesis and back-
end physical design for generating realistic area results
or for manufacturing new chips based on OpenPiton.
The scripts are identical to the ones used to tape-out the
Piton processor, however the scripts have been made pro-
cess agnostic and references to the specific technology
used have been removed due to proprietary foundry intel-
lectual property concerns. Directions are included with
OpenPiton which describe how to port to a new foundry
kit. This allows the user to download OpenPiton, link to
the necessary process development kit files, and run our
full tool flow to produce the chip layout for a new instance
of OpenPiton. In this sense, OpenPiton is portable across
process technologies and provides a complete ecosystem
to implement, test, prototype, and tape-out (manufacture)
research chips.

4. APPLICATIONS
Table 2 presents a taxonomy of open source processors
which highlights important parameters for research. Since
OpenPiton’s first release in 2015, it has been used across a
wide range of applications and research domains, some of
which are described in this section.

the energy cost of differing operand values, and a confir-
mation of earlier results9 that showed that NoCs do not
dominate manycore processors’ power consumption.
Our study also produced what we believe is the most
detailed area breakdown of an open source manycore,
which we reproduce in Figure 6. All characterization data
from our study, as well as designs for the chip printed
circuit board (PCB), are now open source at http://www.
openpiton.org.

L2 Cache
22.16%

L1.5 Cache
7.62%

NoC1 Router
0.98%

NoC2 Router
0.95%

NoC3 Router
0.95%

FPU
2.64%

MITTS
0.17%

JTAG
0.10%

Config regs
0.05%

Core
47.00%

Clock tree
0.01%

Timing opt buffers
0.34%

Filler
16.32%

Unutilized
0.73%

Fetch
17.52%

Load/Store
22.33%

Execute
2.38%

Integer RF
16.81%

Trap logic
6.42%

Multiply
1.53%

FP Front-end
1.85%

Config regs
0.11%

CCX Buffers
0.06%Clock tree

0.13%
Timing opt

buffers
3.83%

Filler
26.13%

Unutilized
0.90%

Tile0
3.27%Tile 1-24

78.37%

Chip bridge
0.12%

Clock circuitry
0.26% I/O cells

3.75%

ORAM
2.73% Timing opt

buffers
0.07%

Filler
9.32%

Unutilized
2.12%

Tile Area: 1.17459 mm2 Core Area: .55205 mm2Chip Area: 35.97552 mm2

Figure 6. Detailed area breakdown of Piton at chip, tile, and core
levels. Reproduced from McKeown et al.13

Table 2. Taxonomy of differences of open source processors (table data last checked in April 2018).

Processor Architecture FPU OS MMU

HW
multi
threaded

Multicore/
manycore/
GPU

Prototype
core count NoC HDL

Back-end
scripts License

pAVR 8b AVR     No –  VHDL  GPL v2
openMSP430 16bMSP430     No –  Verilog  BSD
CPU86 16b x86     No –  VHDL  GPL
Zet 16b x86     No –  Verilog  GPL v3
LatticeMico32 32b LatticeMico32     No –  Verilog  GPL
ZPU 32b MIPS     No –  VHDL  FreeBSD & GPL
SecretBlaze 32b MicroBlaze     No –  VHDL  GPL v3
AltOr32 32b ORBIS     No –  Verilog  LGPL v3
aeMB 32b MicroBlaze     No –  Verilog  LGPL v3
Amber 32b ARM v2a     No –  Verilog  LGPL
OpenRISC 32b/64b ORBIS     No –  Verilog  LGPL
MIPS32 r1 32b MIPS32 r1     No –  Verilog  LGPL v3
LEON 3 32b SPARC V8 ($)    SMP/AMP –  VHDL  GPL
OpenScale 32b MicroBlaze     Manycore FPGA/6  VHDL  GPL v3
XUM 32b MIPS32 r2     Manycore FPGA/8  Verilog  LGPL v3
PicoRV32 32b RISC-V     No FPGA/1  Verilog  ISC
PULP-RI5CY 32b RISC-V     Manycore Chip/9  SystemVerilog  Solderpad 0.51
PULP-Zeroriscy 32b RISC-V     Multicore Chip/1  SystemVerilog  Solderpad 0.51
Nyuzi GPGPU Nyami ISA     GPGPU FPGA  SystemVerilog  Apache 2.0
MIAOW GPGPU AMD Southern Islands     GPU FPGA/1  Verilog  BSD 3-Clause
OpTiMSoC 32b/64b ORBIS     Manycore FPGA/4  SystemVerilog  MIT
Simply RISC S1 64b SPARC V9     No –  Verilog  GPL v2
BERI 64b MIPS/CHERI    (BERI2) Multicore FPGA/4  Bluespec  BERI HW-SW
OpenSPARC T1/T2 64b SPARC V9     Multicore Chip/8  Verilog  GPL v2
Rocket 64b RISC-V     Manycore Chip/8  Chisel  BSD 3-Clause
AnyCore 64b RISC-V     No Chip/1  SystemVerilog  BSD 3-Clause
PULP-Ariane 64b RISC-V     Manycore Chip/1  SystemVerilog  Solderpad 0.51
BOOM 64b RISC-V     Manycore FPGA  Chisel  BSD 3-Clause
OpenPiton 64b SPARC V9     Manycore Chip/25  Verilog  BSD 3-Clause

& GPL v2

  (RTOS)

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 85

4.1. Internal research case studies
Execution Drafting. Execution Drafting11 (ExecD) is an
energy saving microarchitectural technique for multi-
threaded processors, which leverages duplicate computa-
tion. ExecD takes over the thread selection decision from
the OpenSPARC T1 thread selection policy and instru-
ments the front-end to achieve energy savings. ExecD
required modifications to the OpenSPARC T1 core and
thus was not as simple as plugging a standalone mod-
ule into the OpenPiton system. The core microarchitec-
ture needed to be understood, and the implementation
tightly integrated with the core. Implementing ExecD in
OpenPiton revealed several implementation details that
had been abstracted away in simulation, such as tricky
divergence conditions in the thread synchronization
mechanisms. This reiterates the importance of taking
research designs to implementation in an infrastructure
like OpenPiton.

ExecD must be enabled by an ExecD-aware operating
system. Our public Linux kernel and OpenPiton hypervisor
repositories contain patches intended to add support for
ExecD. These patches were developed as part of a single-
semester undergraduate OS research project.

Coherence Domain Restriction. Coherence Domain
Restriction8 (CDR) is a novel cache coherence framework
designed to enable large scale shared memory with low
storage and energy overhead. CDR restricts cache coher-
ence of an application or page to a subset of cores, rather
than keeping global coherence over potentially millions
of cores. In order to implement it in OpenPiton, the TLB
is extended with extra fields and both the L1.5 and L2
cache are modified to fit CDR into the existing cache
coherence protocol. CDR is specifically designed for
large scale shared memory systems such as OpenPiton.
In fact, OpenPiton’s million-core scalability is not fea-
sible without CDR because of increasing directory stor-
age overhead.

Memory Inter-arrival Time Traffic Shaper. The Memory
Inter-arrival Time Traffic Shaper23 (MITTS) enables a
manycore system or an IaaS cloud system to provision
memory bandwidth in the form of a memory request
interarrival time distribution at a per-core or per-appli-
cation basis. A runtime system configures MITTS knobs
in order to optimize different metrics (e.g., throughput,
fairness). MITTS sits at the egress of the L1.5 cache, moni-
toring the memory requests and stalling the L1.5 when it
uses bandwidth outside its allocated distribution. MITTS
has been integrated with OpenPiton and works on a per-
core granularity, though it could be easily modified to
operate per-thread.

MITTS must also be supported by the OS. Our public
Linux kernel and OpenPiton hypervisor repositories con-
tain patches for supporting the MITTS hardware. With
these patches, developed as an undergraduate thesis proj-
ect, Linux processes can be assigned memory inter-arrival
time distributions, as they would in an IaaS environment
where the customer paid for a particular distribution corre-
sponding with their application’s behavior. The OS con-
figures the MITTS bins to correspond with each process’s

allocated distribution, and MITTS enforces the distribu-
tion accordingly.

4.2. External research use
A number of external researchers have already made con-
siderable use of OpenPiton. In a CAD context, Lerner
et al.10 present a development workflow for improving pro-
cessor lifetime, based on OpenPiton and the gem5 simula-
tor, which is able to improve the design’s reliability time
by 4.1×.

OpenPiton has also been used in a security context as a
testbed for hardware trojan detection. OpenPiton’s FPGA
emulation enabled Elnaggar et al.5 to boot full-stack Debian
Linux and extract performance counter information while
running SPEC benchmarks. This project moved quickly
from adopting OpenPiton to an accepted publication in a
matter of months, thanks in part to the full-stack OpenPiton
system that can be emulated on FPGA.

Oblivious RAM (ORAM)7 is a memory controller designed
to eliminate memory side channels. An ORAM controller
was integrated into the 25-core Piton processor, providing
the opportunity for secure access to off-chip DRAM. The con-
troller was directly connected to OpenPiton’s NoC, making
the integration straightforward. It only required a handful
of files to wrap an existing ORAM implementation, and once
it was connected, its integration was verified in simulation
using the OpenPiton test suite.

4.3. Educational use
We have been using OpenPiton in coursework at Princeton, in
particular our senior undergraduate Computer Architecture
and graduate Parallel Computation classes. A few of the
resulting student projects are described here.

Core replacement. Internally, we have tested replace-
ments for the OpenSPARC T1 core with two other open
source cores. These modifications replaced the CCX
interface to the L1.5 cache with shims which translate
to the L1.5’s interface signals. These shims require very
little logic but provide the cores with fully cache-coherent
memory access through P-Mesh. We are using these cores
to investigate manycore processors with heterogeneous
ISAs.

Multichip network topology exploration. A senior under-
graduate thesis project investigated the impact of interchip
network topologies for large manycore processors. Figure 7
shows multiple FPGAs connected over a high-speed serial
interface, carrying standard P-Mesh packets at 9 gigabits
per second. The student developed a configurable P-Mesh
router for this project which is now integrated as a standard
OpenPiton component.

MIAOW. A student project integrated the MIAOW
open source GPU2 with OpenPiton. An OpenPiton core
and a MIAOW core can both fit onto a VC707 FPGA
with the OpenPiton core acting as a host, in place of
the Microblaze that was used in the original MIAOW
release. The students added MIAOW to the chipset
crossbar with a single entry in its XML configuration.
Once they implemented a native P-Mesh interface to
replace the original AXI-Lite interface, MIAOW could

research highlights

86 COMMUNICATIONS OF THE ACM | DECEMBER 2019 | VOL. 62 | NO. 12

	 1.	 OpenSPARC T1 Microarchitecture
Specification. Santa Clara, CA,
2006.

	 2.	 Balasubramanian, R., Gangadhar, V.,
Guo, Z., Ho, C.-H., Joseph, C.,
Menon, J., Drumond, M.P.,
Paul, R., Prasad, S., Valathol, P.,
Sankaralingam, K. Enabling GPGPU
low-level hardware explorations
with MIAOW: An open-source RTL
implementation of a GPGPU. ACM
Trans. Archit. Code Optim. 12, 2
(June 2015).

	 3.	 Bittman, D., Capelis, D.,
Long, D. Introducing SeaOS. In
2014 International Conference on
Information Science and
Applications (ICISA), May 2014, 1–3.

	 4.	 Capelis, D.J. Lockbox: Helping
Computers Keep Your Secrets.
Technical Report UCSC-WASP-15-02,
University of California, Santa Cruz,
Nov. 2015.

	 5.	 Elnaggar, R., Chakrabarty, K.,
Tahoori, M.B. Run-time hardware
trojan detection using performance
counters. In 2017 IEEE International
Test Conference (ITC), Oct. 2017,
1–10.

	 6.	 Esmaeilzadeh, H., Blem, E.,
St. Amant, R., Sankaralingam, K.,
Burger, D. Dark silicon and
the end of multicore scaling. In
Proceedings of the 38th Annual
International Symposium on
Computer Architecture, ISCA ‘11
(New York, NY, USA, 2011), ACM,
365–376.

	 7.	 Fletcher, C.W., Ren, L., Kwon, A., van
Dijk, M., Devadas, S. Freecursive

ORAM: [nearly] free recursion and
integrity verification for position-
based oblivious ram. In Proceedings
of the Twentieth International
Conference on Architectural Support
for Programming Languages and
Operating Systems, ASPLOS ‘15
(New York, NY, USA, 2015), ACM,
103–116,.

	 8.	 Fu, Y., Nguyen, T.M., Wentzlaff, D.
Coherence domain restriction on
large scale systems. In Proceedings
of the 48th International Symposium
on Microarchitecture, MICRO-48
(New York, NY, USA, 2015), ACM,
686–698,.

	 9.	 Kim, J.S., Taylor, M.B., Miller, J.,
Wentzlaff, D. Energy characterization
of a tiled architecture processor
with on-chip networks. In
Proceedings of the 2003
International Symposium on Low
Power Electronics and Design,
ISLPED ‘03 (New York, NY, USA,
2003), ACM, 4–427.

10.	 Lerner, S., Taskin, B. Workload-aware
ASIC flow for lifetime improvement
of multi-core IoT processors.
In 2017 18th International
Symposium on Quality Electronic
Design (ISQED), March 2017,
379–384.

11.	 McKeown, M., Balkind, J.,
Wentzlaff, D. Execution drafting:
Energy efficiency through
computation deduplication.
In 2014 47th Annual IEEE/ACM
International Symposium on
Microarchitecture (MICRO), Dec.
2014, 432–444.

by using Amazon AWS F1 instances, more core types
plugged into the OpenPiton infrastructure, and integra-
tion with other emerging open source hardware projects.
OpenPiton has demonstrated the ability to enable research
at hardware speeds, at scale, and across different areas of
computing research. OpenPiton and other emerging open
source hardware projects have the potential to have sig-
nificant impact not only on how we conduct research and
educate students, but also design chips for commercial and
governmental applications.

Acknowledgments
This material is based on research sponsored by the
NSF under Grants No. CNS-1823222, CCF-1217553, CCF-
1453112, and CCF-1438980, AFOSR under Grant No. FA9550-
14-1-0148, Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) under agree-
ment No. FA8650-18-2-7846 and FA8650-18-2-7852 and DARPA
under Grants No. N66001-14-1-4040 and HR0011-13-2-0005.
The U.S. Government is authorized to reproduce and distrib-
ute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA), the NSF, AFOSR, DARPA, or the U.S.
Government. We thank Paul Jackson, Ting-Jung Chang, Ang
Li, Fei Gao, Katie Lim, Felix Madutsa, and Kathleen Feng for
their important contributions to OpenPiton.�

References

directly access its data and instructions from memory
without the core’s assistance.

Hardware transactional memory. Another student proj-
ect was the implementation of a hardware transactional
memory system in OpenPiton. The students learned about
the P-Mesh cache coherence protocol from the OpenPiton
documentation, before modifying it, including adding extra
states to the L1.5 cache, and producing a highly functional
prototype in only six weeks. The OpenPiton test suite was
central to verifying that existing functionality was main-
tained in the process.

Cache replacement policies. A number of student groups
have modified the cache replacement policies of both the
L1.5 and L2 caches. OpenPiton enabled them to investigate
the performance and area tradeoffs of their replacement
policies across multiple cache sizes and associativities in
the context of a full-stack system, capable of running com-
plex applications.

4.4. Industrial and governmental use
So far we are aware of multiple CAD vendors making use of
OpenPiton internally for testing and educational purposes.
These users provide extra confidence that the RTL written
for OpenPiton will be well supported by industrial CAD
tools, as vendors often lack large scale designs to validate
the functionality of their tools. In government use, DARPA
has identified OpenPiton as a benchmark for use in the
POSH program.

5. FUTURE
OpenPiton has a bright future. It not only has active support
from researchers at Princeton but has a vibrant external user
base and development community. The OpenPiton team
has run four tutorials at major conferences and numerous
tutorials at interested universities and will continue to run
more tutorials. The future roadmap for OpenPiton includes
adding additional configurability, support for more FPGA
platforms and vendors, the ability to emulate in the cloud

Figure 7. Three OpenPiton FPGAs connected by 9 gigabit per second
serial P-Mesh links.

DECEMBER 2019 | VOL. 62 | NO. 12 | COMMUNICATIONS OF THE ACM 87

Jonathan Balkind, Michael McKeown,
Tri Nguyen, Alexey Lavrov, Mohammad
Shahrad, Adi Fuchs, and David
Wentzlaff ({jbalkind, mmckeown, trin,
alavrov, mshahrad, adif, wentzlaf}@
princeton.edu), Princeton University,
Princeton, NJ, USA.

Yaosheng Fu* and Samuel Payne* ({yfu,
spayne}@nvidia.com), NVIDIA, Santa
Clara, CA, USA.

Yanqi Zhou* (zhouyanqi@baidu.com),
Baidu SVAIL, Sunnyvale, CA, USA.

Xiaohua Liang* (xialian@microsoft.com),
Microsoft, Redmond, WA, USA.

Matthew Matl* (mmatl@eecs.berkeley.
edu), University of California, Berkeley,
USA.

12.	 McKeown, M., Fu, Y., Nguyen, T.,
Zhou, Y., Balkind, J., Lavrov, A.,
Shahrad, M., Payne, S., Wentzlaff, D.
Piton: A manycore processor for
multitenant clouds. IEEE Micro 37, (2)
(Mar. 2017), 70–80.

13.	 McKeown, M., Lavrov, A., Shahrad, M.,
Jackson, P., Fu, Y., Balkind, J.,
Nguyen, T., Lim, K., Zhou, Y.,
Wentzlaff, D. Power and energy
characterization of an open source
25-core manycore processor. In IEEE
International Symposium on High
Performance Computer Architecture
(HPCA), 2018.

14.	 Miller, B., Brasili, D., Kiszely, T., Kuhn, R.,
Mehrotra, R., Salvi, M., Kulkarni, M.,
Varadharajan, A., Yin, S.-H., Lin, W.,
Hughes, A., Stysiack, B., Kandadi, V.,
Pragaspathi, I., Hartman, D., Carlson, D.,
Yalala, V., Xanthopoulos, T., Meninger, S.,
Crain, E., Spaeth, M., Aina, A.,
Balasubramanian, S., Vulih, J.,
Tiwary, P., Lin, D., Kessler, R., Fishbein, B.,
Jain, A. A 32-core RISC microprocessor
with network accelerators, power
management and testability features. In
IEEE International Solid-State Circuits
Conference Digest of Technical Papers,
Feb. 2012, 58–60.

15.	 Oracle. OpenSPARC T1. http://
www.oracle.com/technetwork/
systems/opensparc/opensparc-t1-
page-1444609.html.

16.	 PyHP. PyHP Official Home Page.
http://pyhp.sourceforge.net.

17.	 Seiler, L., Carmean, D., Sprangle, E.,
Forsyth, T., Abrash, M., Dubey, P.,
Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E.,
Juan, T., Hanrahan, P. Larrabee: A
many-core ×86 architecture for visual

computing. ACM Trans. Graph. 27, (3)
(Aug. 2008), 18:1–18:15.

18.	 Szefer, J., Zhang, W., Chen, Y.-Y.,
Champagne, D., Chan, K., Li, W.,
Cheung, R., Lee, R. Rapid single-
chip secure processor prototyping
on the OpenSPARC FPGA platform.
In 2011 22nd IEEE International
Symposium on Rapid System
Prototyping (RSP), May 2011, 38–44.

19.	 Vangal, S.R., Howard, J., Ruhl, G., Dighe,
S., Wilson, H., Tschanz, J., Finan, D.,
Singh, A., Jacob, T., Jain, S., et al. An
80-tile sub-100-w teraops processor
in 65-nm CMOS. IEEE J. Solid-State
Circuits 43, 1 (2008), 29–41.

20.	 Wentzlaff, D., Griffin, P., Hoffmann, H.,
Bao, L., Edwards, B., Ramey, C.,
Mattina, M., Miao, C.-C., Brown III, J.F.,
Agarwal, A. On-chip interconnection
architecture of the Tile Processor.
IEEE Micro 27, (5) (Sept. 2007), 15–31.

21.	 Wentzlaff, D., Jackson, C.J.,
Griffin, P., Agarwal, A. Configurable
fine-grain protection for multicore
processor virtualization. In
Proceedings of the Annual
International Symposium on
Computer Architecture
(Washington, DC, USA, 2012),
464–475.

22.	 Woo, D.H., Lee, H.-H.S. Extending
Amdahl’s law for energy-efficient
computing in the many-core era.
Computer 12 (2008), 24–31.

23.	 Zhou, Y., Wentzlaff, D. Mitts:
Memory inter-arrival time traffic
shaping. In Proceedings of the
43rd International Symposium on
Computer Architecture, ISCA ‘16
(Piscataway, NJ, USA, 2016), IEEE
Press, 532–544.

Copyright held by authors/owners. Publication rights licensed to ACM.

*Work was done at Princeton University.

Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology (AFIT)
Dayton, Ohio

Faculty Position

The Department of Electrical and Computer Engineering at the Air Force
Institute of Technology is seeking applications for a tenured or tenure-
track faculty position. All academic ranks will be considered. Applicants
must have an earned doctorate in Electrical Engineering, Computer
Engineering, Computer Science, or a closely affiliated discipline by the
time of their appointment (anticipated 1 September 2020).

We are particularly interested in applicants specializing in one or more of
the following areas: autonomy, artificial intelligence / machine learning,
navigation with or without GPS, cyber security, and VLSI. Candidates in
other areas of specialization are also encouraged to apply. This position
requires teaching at the graduate level as well as establishing and
sustaining a strong DoD relevant externally funded research program with
a sustainable record of related peer-reviewed publications.

The Air Force Institute of Technology (AFIT) is the premier Department of
Defense (DoD) institution for graduate education in science, technology,
engineering, and management, and has a Carnegie Classification as a
High Research Activity Doctoral University. The Department of Electrical
and Computer Engineering offers accredited M.S. and Ph.D. degree
programs in Electrical Engineering, Computer Engineering, and Computer
Science as well as an MS degree program in Cyber Operations.

Applicants must be U.S. citizens. Full details on the position, the
department, applicant qualifications, and application procedures can be
found at http://www.afit.edu/ENG/ . Review of applications will begin
on January 6, 2020. The United States Air Force is an equal opportunity,
affirmative action employer.

Advertise with ACM!

Reach the innovators and thought leaders
working at the cutting edge of

computing and information
technology through ACM’s magazines,

websites and newsletters.

Ilia Rodriguez
+1 212-626-0686
acmmediasales@acm.org

Request a media kit
with specifications and pricing:

