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Abstract
Industry is building larger, more complex, manycore pro-
cessors on the back of strong institutional knowledge, 
but academic projects face difficulties in replicating that 
scale. To alleviate these difficulties and to develop and 
share knowledge, the community needs open architec-
ture frameworks for simulation, chip design, and software 
exploration that support extensibility, scalability, and con-
figurability, alongside an established base of verification 
tools and supported software. In this article, we present 
OpenPiton, an open source framework for building scal-
able architecture research prototypes from one core to 500 
million cores. OpenPiton is the world’s first open source, 
general-purpose, multithreaded manycore processor, and 
framework. OpenPiton is highly configurable, providing a 
rich design space spanning a variety of hardware parame-
ters that researchers can change. OpenPiton designs can be 
emulated on FPGAs, where they can run full-stack multiuser 
Debian Linux. OpenPiton is designed to scale to very large 
core fabrics, enabling researchers to measure operating sys-
tem, compiler, and software scalability. The mature code-
base reflects the complexity of an industrial-grade design 
and provides the necessary scripts to build new chips, mak-
ing OpenPiton a natural choice for computer-aided design 
(CAD) research. OpenPiton has been validated with a 25-core 
chip prototype, named Piton, and is bolstered by a validation 
suite that has thousands of tests, providing an environment 
to test new hardware designs while verifying the correctness 
of the whole system. OpenPiton is being actively used in 
research both internally to Princeton and in the wider com-
munity, as well as being adopted in education, industry, and 
government settings.

1. INTRODUCTION
Building processors for academic research purposes can be 
a risky proposition. Particularly as processors have grown in 
size, and with the focus on multicore and manycore proces-
sors,17, 19, 20, 21, 14, 22, 6 the number of potential points of failure 
in chip fabrication has increased drastically. To combat 
this, the community needs well-tested, open-source, scal-
able frameworks that they can rely on as baselines to work  
from and compare against. To reduce “academic time-to- 
publication”, these frameworks must provide robust software 
tools, mature full-system software stacks, rely on industry- 
standard languages, and provide thorough test suites. 
Additionally, to support research in a broad variety of fields, 

The original version of this paper is entitled “OpenPiton: 
An Open Source Manycore Research Framework” and was 
published in Proceedings of ASPLOS 2016, Atlanta, GA, 
April 2–6, 2016, ACM.

these frameworks must be highly configurable, be synthesiz-
able to FPGA and ASIC for prototyping purposes, and pro-
vide the basis for others to tape-out (manufacture) their own, 
modified academic chips. Building and supporting such an 
infrastructure is a major undertaking which has prevented 
such prior designs. Our framework, OpenPiton, attacks this 
challenge and provides all of these features and more.

OpenPiton is the world’s first open source, general-
purpose, multithreaded manycore processor. OpenPiton is 
scalable and portable; the architecture supports address-
ing for up to 500-million cores, supports shared memory 
both within a chip and across multiple chips, and has been 
designed to easily enable high performance 1000+ core 
microprocessors and beyond. The design is implemented 
in industry-standard Verilog HDL and does not require 
the use of any new languages. OpenPiton enables research 
from the small to the large with demonstrated implemen-
tations from the slimmed-down, single-core PicoPiton, 
which is emulated on a $160 Xilinx Artix 7 at 29.5MHz, 
up to the 25-core Piton processor which targeted a 1GHz 
operating point and was recently validated and thoroughly 
characterized.12, 13

The OpenPiton platform shown in Figure 1 is a modern, 
tiled, manycore design consisting of a 64-bit architecture 
using the mature SPARC v9 ISA with P-Mesh: our scalable 
cache coherence protocol and network on chip (NoC). 
OpenPiton builds upon the industry-hardened, open-source 
OpenSPARC T115, 1, 18 core, but sports a completely scratch-
built uncore (caches, cache-coherence protocol, NoCs, 
NoC-based I/O bridges, etc), a new and modern simulation 
framework, configurable and portable FPGA scripts, a com-
plete set of scripts enabling synthesis and implementation 
of ready-to-manufacture chips, and full-stack multiuser 
Debian Linux support. OpenPiton is available for download 
at http://www.openpiton.org.

OpenPiton has been designed as a platform to enable 
at-scale research. An explicit design goal of OpenPiton is 
that it should be easy to use by other researchers. To sup-
port this, OpenPiton provides a high degree of integration 
and configurability as shown in Table 1. Unlike many other 
designs where the pieces are provided, but it is up to the 
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Figure 2. Architecture of (a) a tile and (b) chipset.

option or configuration file. OpenPiton is easy to extend; 
the presence of a well documented core, a well documented 
coherence protocol, and an easy-to-interface NoC make 
adding research features straightforward. Research exten-
sions to OpenPiton that have already been built include 
several novel memory system explorations, an Oblivious 
RAM controller, and a new in-core thread scheduler. The 
validated and mature ISA and software ecosystem sup-
port OS and compiler research. The release of OpenPiton’s 
scripts for FPGA emulation and chip manufacture make 
it easy for others to port to new FPGAs or semiconduc-
tor process technologies. In particular, this enables CAD 
researchers who need large netlists to evaluate their algo-
rithms at-scale.

2. THE OPENPITON PLATFORM
OpenPiton is a tiled, manycore architecture, as shown in 
Figure 1. It is designed to be scalable, both intra-chip and 
inter-chip, using the P-Mesh cache coherence system.

Intra-chip, tiles are connected via three P-Mesh networks 
on-chip (NoCs) in a scalable 2D mesh topology (by default). 
The NoC router address space supports scaling up to 256 
tiles in each dimension within a single OpenPiton chip (64K 
cores/chip).

For inter-chip communication, the chip bridge extends 
the three NoCs off-chip, connecting the tile array (through 
the tile in the upper-left) to off-chip logic (chipset). The chip-
set may be implemented on an FPGA, as a standalone chip, 
or integrated into an OpenPiton chip.

The extension of the P-Mesh NoCs off-chip allows the 
seamless connection of multiple OpenPiton chips to cre-
ate a larger system, as shown in Figure 1. OpenPiton’s 
cache-coherence extends off-chip as well, enabling shared-
memory across multiple chips, for the study of even larger 
shared-memory manycore systems.

2.1. Tile
The architecture of a tile is shown in Figure 2a. A tile consists 
of a core, an L1.5 cache, an L2 cache, a floating-point unit (FPU), 
a CPU-Cache Crossbar (CCX) arbiter, a Memory Inter-arrival 
Time Traffic Shaper (MITTS), and three P-Mesh NoC routers.

The L2 and L1.5 caches connect directly to all three NoC 
routers, and all messages entering and leaving the tile tra-
verse these interfaces. The CCX is the crossbar interface used 

user to compose them together, OpenPiton is designed with 
all of the components integrated into the same, easy-to-
use, build infrastructure providing push-button scalability. 
Researchers can easily deploy OpenPiton’s source code, add 
in modifications, and explore their novel research ideas in 
the setting of a fully working system. Thousands of targeted, 
high-coverage test cases are provided to enable researchers 
to innovate with a safety net that ensures functionality is 
maintained. OpenPiton’s open source nature also makes it 
easy to release modifications and reproduce previous work 
for comparison or reuse.

Rather than simply being a platform designed by com-
puter architects for use by computer architects, OpenPiton 
enables researchers in other fields including operating sys-
tems (OS), security, compilers, runtime tools, systems, and 
computer-aided design (CAD) tools to conduct research at-
scale. In order to enable such a wide range of applications, 
OpenPiton is configurable and extensible. The number of 
cores, attached I/O, size of caches, in-core parameters, and 
network topology are all configurable from a command-line 

 Tile

                   Chip

 

  

chipset

Figure 1. OpenPiton Architecture. Multiple manycore chips are 
connected together with chipset logic and networks to build large 
scalable manycore systems. OpenPiton’s cache coherence protocol 
extends off chip.

Table 1. Supported OpenPiton configuration options. Bold indicates 
default values. (*Associativity reduced to 2-ways at smallest size).

Component Configurability options

Cores (per chip) Up to 65,536
Cores (per system) Up to 500 million
Threads per core 1/2/4
Floating-point unit Present/Absent
Stream-processing unit Present/Absent
TLBs 8/16/32/64 entries
L1 I-cache 8*/16/32KB
L1 D-cache 4*/8/16KB
L1.5 cache Number of sets, ways (8KB, 4-way)
L2 cache (per tile) Number of sets, ways (64KB, 4-way)
Intra-chip topologies 2D mesh, crossbar
Inter-chip topologies 2D mesh, 3D mesh, crossbar, butterfly network
Bootloading SD/SDHC card, UART
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in the OpenSPARC T1 to connect the cores, L2 cache, FPU, 
I/O, etc.1 In OpenPiton, the L1.5 and FPU are connected to 
the core by CCX.

2.2. Core
OpenPiton uses the open-source OpenSPARC T115 core with 
modifications. This core was chosen because of its industry-
hardened design, multi-threaded capability, simplicity, and 
modest silicon area requirements. Equally important, the 
OpenSPARC framework has a stable code base, implements 
a mature ISA with compiler and OS support, and comes with 
a large test suite.

In the default configuration for OpenPiton, as used in 
Piton, the number of threads is reduced from four to two 
and the stream processing unit (SPU) is removed from the 
core to save area. The default Translation Lookaside Buffer 
(TLB) size is 16 entries but can be increased to 32 or 64, or 
decreased down to 8 entries.

Additional configuration registers were added to enable 
extensibility within the core. They are useful for adding 
additional functionality to the core which can be configured 
from software, for example enabling/disabling functional-
ity, configuring different modes of operation, etc.

2.3. Cache hierarchy
OpenPiton’s cache hierarchy is composed of three cache 
levels. Each tile in OpenPiton contains private L1 and L1.5 
caches and a slice of the distributed, shared L2 cache. The 
data path of the cache hierarchy is shown in Figure 3.

The memory subsystem maintains cache coherence 
using our coherence protocol, called P-Mesh. It adheres to 
the memory consistency model used by the OpenSPARC T1. 
Coherent messages between L1.5 caches and L2 caches 
communicate through three NoCs, carefully designed to 
ensure deadlock-free operation.

L1 caches. The L1 caches are reused from the OpenSPARC 
T1 design with extensions for configurability. They are com-
posed of separate L1 instruction and L1 data caches, both 
of which are write-through and 4-way set-associative. By 
default, the L1 data cache is an 8KB cache and its line size 
is 16-bytes. The 16KB L1 instruction cache has a 32-byte 
line size.

L1.5 data cache. The L1.5 (comparable to L2 caches in 
other processors) both transduces the OpenSPARC T1’s 
CCX protocol to P-Mesh’s NoC coherence packet formats, 
and acts as a write-back layer, caching stores from the write-
through L1 data cache. Its parameters match the L1 data 
cache by default.

The L1.5 communicates to and from the core through 
the CCX bus, preserved from the OpenSPARC T1. When a 

memory request results in a miss, the L1.5 translates and 
forwards it to the L2 through the NoC channels. Generally, 
the L1.5 issues requests on NoC1, receives data on NoC2, 
and writes back modified cache lines on NoC3, as shown in 
Figure 3.

The L1.5 is inclusive of the L1 data cache; each can 
be independently sized with independent eviction poli-
cies. For space and performance, the L1.5 does not cache 
instructions–these cache lines are bypassed directly to the 
L2 cache.

L2 cache. The L2 cache (comparable to a last-level L3 
cache in other processors) is a distributed, write-back 
cache shared by all tiles. The default cache configuration is 
64KB per tile and 4-way set associativity, but both the cache 
size and associativity are configurable. The cache line size 
is 64 bytes, larger than the line sizes of caches lower in the 
hierarchy. The integrated directory cache has 64 bits per 
entry, so it can precisely keep track of up to 64 sharers by 
default.

The L2 cache is inclusive of the private caches (L1 and 
L1.5). Cache line way mapping between the L1.5 and the L2 
is independent and is entirely subject to the replacement 
policy of each cache. Since the L2 is distributed, cache lines 
consecutively mapped in the L1.5 are likely to be distributed 
across multiple L2 tiles (L2 tile referring to a portion of the 
distributed L2 cache in a single tile).

The L2 is the point of coherence for all cacheable memory 
requests. All cacheable memory operations (including atomic 
operations such as compare-and-swap) are ordered, and the 
L2 strictly follows this order when servicing requests. The L2 
also keeps the instruction and data caches coherent, per the 
OpenSPARC T1’s original design. When a line is present in 
a core’s L1 instruction cache and is loaded as data, the L2 
sends invalidations to the relevant instruction caches before 
servicing the load.

2.4. P-Mesh network on-chip
There are three P-Mesh NoCs in an OpenPiton chip. The 
NoCs provide communication between the tiles for cache 
coherence, I/O, memory traffic, and inter-core interrupts. 
They also route traffic destined for off-chip to the chip 
bridge. The packet format contains 29 bits of core address-
ability, making it scalable up to 500 million cores.

To ensure deadlock-free operation, the L1.5 cache, L2 
cache, and memory controller give different priorities to 
different NoC channels; NoC3 has the highest priority, next 
is NoC2, and NoC1 has the lowest priority. Thus, NoC3 will 
never be blocked. In addition, all hardware components 
are designed such that consuming a high priority packet is 
never dependent on lower priority traffic.

Classes of coherence operations are mapped to NoCs 
based on the following rules, as depicted in Figure 3:

•	 NoC1 messages are initiated by requests from the pri-
vate cache (L1.5) to the shared cache (L2).

•	 NoC2 messages are initiated by the shared cache (L2) to 
the private cache (L1.5) or memory controller.

•	 NoC3 messages are responses from the private cache 
(L1.5) or memory controller to the shared cache (L2).
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core instances and wires for connecting them from a single 
template instance. This reduces code complexity, improves 
readability, saves time when modifying the design, and 
makes the creation of large meshes straightforward. The cre-
ation of large two-dimensional mesh interconnects of up  
to 256 × 256 tiles is reduced to a single instantiation. The 
mesh can be any rectangular configuration, and the dimen-
sions do not need to be powers of two. This was a necessary 
feature for the 5 × 5 (25-core) Piton processor.

NoC topology configurability. P-Mesh provides other NoC 
connection topologies than the default two-dimensional 
mesh used in OpenPiton. The coherence protocol only 
requires that messages are delivered in-order from one 
point to another point. Since there are no inter-node order-
ing requirements, the NoC can easily be swapped out for a 
crossbar, higher dimension router, or higher radix design. 
Our configurable P-Mesh router can be reconfigured to a 
number of topologies shown in Table 1. For intra-chip use, 
OpenPiton can be configured to use a crossbar, which has 
been tested with four and eight cores with no test regressions. 
Other NoC research prototypes can easily be integrated and 
their performance, energy, and other characteristics can be 
determined through RTL, gate-level simulation, or FPGA 
emulation.

Chipset configurability. The P-Mesh chipset crossbar is 
configurable in the number of ports to connect the myriad 
devices OpenPiton users may have. There is a single XML 
file where the chipset devices and their address ranges are 
specified, so connecting a new device needs only a Verilog 
instantiation and an XML entry. PyHP is used to automati-
cally connect the necessary P-Mesh NoC connections and 
Packet Filters.

We have so far connected a variety of devices through 
P-Mesh on the chipset. These include DRAM, Ethernet, 
UART, SD, SDHC, VGA, PS/2 keyboards, and even the 
MIAOW open source GPU.2 These devices are driven by the 
OpenPiton core and perform their own DMA where neces-
sary, routed over the chipset crossbar.

Multi-chip scalability. Similar to the on-chip mesh, PyHP 
enables the generation of a network of chips starting with 
the instantiation of a single chip. OpenPiton provides an 
address space for up to 8192 chips, with 65,536 cores per 
chip. By using the scalable P-Mesh cache coherence mecha-
nism built into OpenPiton, half-billion core systems can be 
built. This configurability enables the building of large sys-
tems to test ideas at scale.

3. VALIDATION
3.1. Platform stability
One of the benefits of OpenPiton is its stability, matu-
rity, and active support. Much of this is inherited from 
the OpenSPARC T1 core, which has a stable code base 
and has been studied for years, allowing the code to 
be reviewed and bugs fixed by many people. In addi-
tion, it implements a mature, commercial, and open 
ISA, SPARC V9. This means there is existing full tool  
chain support for OpenPiton, including Debian Linux OS 
support, a compiler, and an assembler. SPARC is supported 
on a number of OSs including Debian Linux, Oracle’s 

2.5. Chipset
The chipset, shown in Figure 2b, houses the I/O, DRAM 
controllers, chip bridge, P-Mesh chipset crossbar, and 
P-Mesh inter-chip network routers. The chip bridge de-
multiplexes traffic from the attached chip back into the 
three physical NoCs. The traffic then passes through a Packet 
Filter (not shown), which modifies packet destination 
addresses based on the memory address in the request 
and the set of devices on the chipset. The chipset crossbar 
(a modified network router) then routes the packets to their 
correct destination device. If the traffic is not destined for 
this chipset, it is passed to the inter-chip network rout-
ers, which route the traffic to another chipset according 
to the inter-chip routing protocol. Traffic destined for the 
attached chip is directed back through similar paths to the 
chip bridge.

Inter-chip routing. The inter-chip network router is con-
figurable in terms of router degree, routing algorithm, buffer 
size, etc. This enables flexible exploration of different router 
configurations and network topologies. Currently, we have 
implemented and verified crossbar, 2D mesh, 3D mesh, and 
butterfly networks. Customized topologies can be explored 
by reconfiguring the network routers.

2.6. Configurability
OpenPiton was designed to be a configurable platform, 
making it useful for many applications. Table 1 shows 
OpenPiton’s configurability options, highlighting the large 
design space that it offers.

PyHP for Verilog. In order to provide low effort con-
figurability of our Verilog RTL, we make use of a Python 
pre-processor, the Python Hypertext Processor (PyHP).16 
PyHP was originally designed for Python dynamic web-
page generation and is akin to PHP. We have adapted it 
for use with Verilog code. Parameters can be passed into 
PyHP, and arbitrary Python code can be used to generate 
testbenches or modules. PyHP enables extensive config-
urability beyond what is possible with Verilog generate 
statements alone.

Core and cache configurability. OpenPiton’s core con-
figurability parameters are shown in Table 1. The default 
parameters are shown in bold. OpenPiton preserves the 
OpenSPARC T1’s ability to modify TLB sizes (from 8 to 64, 
in powers of two), thread counts (from 1 to 4), and the 
presence or absence of the FPU and SPU. Additionally, 
OpenPiton’s L1 data and instruction caches can be dou-
bled or halved in size (associativity drops to 2 when reduc-
ing size).

Leveraging PyHP, OpenPiton provides parameterizable 
memories for simulation or FPGA emulation. In addition, 
custom or proprietary memories can easily be used for chip 
development. This parameterization enables the configu-
rability of cache parameters. The size and associativity of 
the L1.5 and L2 caches are configurable, though the line size 
remains static.

Manycore scalability. PyHP also enables the creation 
of scalable meshes of cores, drastically reducing the code 
size and complexity in some areas adopted from the origi-
nal OpenSPARC T1. OpenPiton automatically generates all 
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Figure 4. Test suite coverage results by module (default OpenPiton 
configuration).
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Linux for SPARC,a and OpenSolaris (and its successors). 
Porting the OpenSPARC T1 hypervisor required changes 
to fewer than 10 instructions, and a newer Debian Linux 
distribution was modified with open source, readily 
available, OpenSPARC T1-specific patches written as 
part of Lockbox.3, 4

OpenPiton provides additional stability on top of what is 
inherited from OpenSPARC T1. The tool flow was updated to 
modern tools and ported to modern Xilinx FPGAs. OpenPiton 
is also used extensively for research internal to Princeton. 
This means there is active support for OpenPiton, and the 
code is constantly being improved and optimized, with regu-
lar releases over the last several years. In addition, the open 
sourcing of OpenPiton has strengthened its stability as a 
community has built.

Validation. When designing large scale processors, sim-
ulation of the hardware design is a must. OpenPiton sup-
ports one open source and multiple commercial Verilog 
simulators, which can simulate the OpenPiton design at 
rates up to tens or hundreds of kilohertz. OpenPiton inher-
ited and then extended the OpenSPARC T1’s large test 
suite with thousands of directed assembly tests, random-
ized assembly test generators, and tests written in C. This 
includes tests for not only the core, but the memory system, 
I/O, cache coherence protocol, etc. Additionally, the exten-
sions like Execution Drafting (ExecD) (Section 4.1.1) have 
their own test suites. When making research modifications 
to OpenPiton, the researcher can rely on an established test 
suite to ensure that their modifications did not introduce 
any regressions. In addition, the OpenPiton documenta-
tion details how to add new tests to validate modifications 
and extend the existing test suite. Researchers can also use 
our scripts to run large regressions in parallel (to tackle the 
slower individual execution), automatically produce pass/
fail reports and coverage reports (as shown in Figure 4), 
and run synthesis to verify that synthesis-safe Verilog has 
been used. Our scripts support the widely used SLURM job 
scheduler and integrate with Jenkins for continuous inte-
gration testing.

3.2. FPGA prototyping
OpenPiton can also be emulated on FPGA, which pro-
vides the opportunity to prototype the design, emulated 
at tens of megahertz, to improve throughput when run-
ning our test suite or more complex code, such as an 
interactive operating system. OpenPiton is actively sup-
ported on three Xilinx FPGA platforms: Artix-7 (Digilent 

Nexys Video), Kintex-7 (Digilent Genesys 2) and Virtex-7 
(VC707 Evaluation Board). An external port is also main-
tained for the Zynq-7000 (ZC706 Evaluation Board). 
Figure 5 shows the area breakdown for a minimized 
“PicoPiton” core, implemented for an Artix-7 FPGA 
(Digilent Nexys 4 DDR).

OpenPiton designs have the same features as the Piton 
processor, validating the feasibility of that particular design 
(multicore functionality, etc.), and can include the chip 
bridge to connect multiple FPGAs via an FPGA Mezzanine 
Card (FMC) link. All of the FPGA prototypes feature a full 
system (chip plus chipset), using the same codebase as the 
chipset used to test the Piton processor.

OpenPiton on FPGA can load bare-metal programs over 
a serial port and can boot full stack multiuser Debian Linux 
from an SD/SDHC card. Booting Debian on the Genesys2 
board running at 87.5MHz takes less than 4 minutes (and 
booting to a bash shell takes just one minute), compared 
to 45 minutes for the original OpenSPARC T1, which relied 
on a tethered MicroBlaze for its memory and I/O requests. 
This boot time improvement combined with our push-
button FPGA synthesis and implementation scripts drasti-
cally increases productivity when testing operating system 
or hardware modifications.

3.3. The Princeton Piton Processor
The Piton processor prototype12, 13 was manufactured in 
March 2015 on IBM’s 32 nm SOI process with a target clock 
frequency of 1GHz. It features 25 tiles in a 5 × 5 mesh on a 
6mm × 6mm (36 mm2) die. Each tile is two-way threaded 
and includes three research projects: ExecD,11 CDR,8 and 
MITTS,23 while an ORAM7 controller was included at the chip 
level. The Piton processor provides validation of OpenPiton  
as a research platform and shows that ideas can be taken 
from inception to silicon with OpenPiton.

With Piton, we also produced the first detailed power 
and energy characterization of an open source manycore 
design implemented in silicon.13 This included character-
izing energy per instruction, NoC energy, voltage versus 
frequency scaling, thermal characterization, and memory 
system energy, among other properties. All of this was 
done in our lab, running on the Piton processor with the 
OpenPiton chipset implemented on FPGA. Performing 
such a characterization yielded new insights into the 
balance between recomputation and data movement, 

a	 Linux for SPARC is hosted at https://oss.oracle.com/projects/linux-sparc/
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3.4. Synthesis and back-end support
OpenPiton provides scripts to aid in synthesis and back-
end physical design for generating realistic area results 
or for manufacturing new chips based on OpenPiton. 
The scripts are identical to the ones used to tape-out the 
Piton processor, however the scripts have been made pro-
cess agnostic and references to the specific technology 
used have been removed due to proprietary foundry intel-
lectual property concerns. Directions are included with 
OpenPiton which describe how to port to a new foundry 
kit. This allows the user to download OpenPiton, link to 
the necessary process development kit files, and run our 
full tool flow to produce the chip layout for a new instance 
of OpenPiton. In this sense, OpenPiton is portable across 
process technologies and provides a complete ecosystem 
to implement, test, prototype, and tape-out (manufacture) 
research chips.

4. APPLICATIONS
Table 2 presents a taxonomy of open source processors 
which highlights important parameters for research. Since 
OpenPiton’s first release in 2015, it has been used across a 
wide range of applications and research domains, some of 
which are described in this section.

the energy cost of differing operand values, and a confir-
mation of earlier results9 that showed that NoCs do not 
dominate manycore processors’ power consumption.  
Our study also produced what we believe is the most 
detailed area breakdown of an open source manycore, 
which we reproduce in Figure 6. All characterization data 
from our study, as well as designs for the chip printed 
circuit board (PCB), are now open source at http://www.
openpiton.org.
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Figure 6. Detailed area breakdown of Piton at chip, tile, and core 
levels. Reproduced from McKeown et al.13

Table 2. Taxonomy of differences of open source processors (table data last checked in April 2018).

Processor Architecture FPU OS MMU

HW  
multi
threaded

Multicore/
manycore/ 
GPU

Prototype 
core count NoC HDL

Back-end 
scripts License

pAVR 8b AVR     No –  VHDL  GPL v2
openMSP430 16bMSP430     No –  Verilog  BSD
CPU86 16b x86     No –  VHDL  GPL
Zet 16b x86     No –  Verilog  GPL v3
LatticeMico32 32b LatticeMico32     No –  Verilog  GPL
ZPU 32b MIPS     No –  VHDL  FreeBSD & GPL
SecretBlaze 32b MicroBlaze     No –  VHDL  GPL v3
AltOr32 32b ORBIS     No –  Verilog  LGPL v3
aeMB 32b MicroBlaze     No –  Verilog  LGPL v3
Amber 32b ARM v2a     No –  Verilog  LGPL
OpenRISC 32b/64b ORBIS     No –  Verilog  LGPL
MIPS32 r1 32b MIPS32 r1     No –  Verilog  LGPL v3
LEON 3 32b SPARC V8 ($)    SMP/AMP –  VHDL  GPL
OpenScale 32b MicroBlaze     Manycore FPGA/6  VHDL  GPL v3
XUM 32b MIPS32 r2     Manycore FPGA/8  Verilog  LGPL v3
PicoRV32 32b RISC-V     No FPGA/1  Verilog  ISC
PULP-RI5CY 32b RISC-V     Manycore Chip/9  SystemVerilog  Solderpad 0.51
PULP-Zeroriscy 32b RISC-V     Multicore Chip/1  SystemVerilog  Solderpad 0.51
Nyuzi GPGPU Nyami ISA     GPGPU FPGA  SystemVerilog  Apache 2.0
MIAOW GPGPU AMD Southern Islands     GPU FPGA/1  Verilog  BSD 3-Clause
OpTiMSoC 32b/64b ORBIS     Manycore FPGA/4  SystemVerilog  MIT
Simply RISC S1 64b SPARC V9     No –  Verilog  GPL v2
BERI 64b MIPS/CHERI    (BERI2) Multicore FPGA/4  Bluespec  BERI HW-SW
OpenSPARC T1/T2 64b SPARC V9     Multicore Chip/8  Verilog  GPL v2
Rocket 64b RISC-V     Manycore Chip/8  Chisel  BSD 3-Clause
AnyCore 64b RISC-V     No Chip/1  SystemVerilog  BSD 3-Clause
PULP-Ariane 64b RISC-V     Manycore Chip/1  SystemVerilog  Solderpad 0.51
BOOM 64b RISC-V     Manycore FPGA  Chisel  BSD 3-Clause
OpenPiton 64b SPARC V9     Manycore Chip/25  Verilog  BSD 3-Clause 

& GPL v2

  (RTOS)
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4.1. Internal research case studies
Execution Drafting. Execution Drafting11 (ExecD) is an 
energy saving microarchitectural technique for multi-
threaded processors, which leverages duplicate computa-
tion. ExecD takes over the thread selection decision from 
the OpenSPARC T1 thread selection policy and instru-
ments the front-end to achieve energy savings. ExecD 
required modifications to the OpenSPARC T1 core and 
thus was not as simple as plugging a standalone mod-
ule into the OpenPiton system. The core microarchitec-
ture needed to be understood, and the implementation 
tightly integrated with the core. Implementing ExecD in 
OpenPiton revealed several implementation details that 
had been abstracted away in simulation, such as tricky 
divergence conditions in the thread synchronization 
mechanisms. This reiterates the importance of taking 
research designs to implementation in an infrastructure 
like OpenPiton.

ExecD must be enabled by an ExecD-aware operating 
system. Our public Linux kernel and OpenPiton hypervisor 
repositories contain patches intended to add support for 
ExecD. These patches were developed as part of a single-
semester undergraduate OS research project.

Coherence Domain Restriction. Coherence Domain 
Restriction8 (CDR) is a novel cache coherence framework 
designed to enable large scale shared memory with low 
storage and energy overhead. CDR restricts cache coher-
ence of an application or page to a subset of cores, rather 
than keeping global coherence over potentially millions 
of cores. In order to implement it in OpenPiton, the TLB 
is extended with extra fields and both the L1.5 and L2 
cache are modified to fit CDR into the existing cache 
coherence protocol. CDR is specifically designed for 
large scale shared memory systems such as OpenPiton. 
In fact, OpenPiton’s million-core scalability is not fea-
sible without CDR because of increasing directory stor-
age overhead.

Memory Inter-arrival Time Traffic Shaper. The Memory 
Inter-arrival Time Traffic Shaper23 (MITTS) enables a 
manycore system or an IaaS cloud system to provision 
memory bandwidth in the form of a memory request 
interarrival time distribution at a per-core or per-appli-
cation basis. A runtime system configures MITTS knobs 
in order to optimize different metrics (e.g., throughput, 
fairness). MITTS sits at the egress of the L1.5 cache, moni-
toring the memory requests and stalling the L1.5 when it 
uses bandwidth outside its allocated distribution. MITTS 
has been integrated with OpenPiton and works on a per-
core granularity, though it could be easily modified to 
operate per-thread.

MITTS must also be supported by the OS. Our public 
Linux kernel and OpenPiton hypervisor repositories con-
tain patches for supporting the MITTS hardware. With 
these patches, developed as an undergraduate thesis proj-
ect, Linux processes can be assigned memory inter-arrival 
time distributions, as they would in an IaaS environment 
where the customer paid for a particular distribution corre-
sponding with their application’s behavior. The OS con-
figures the MITTS bins to correspond with each process’s 

allocated distribution, and MITTS enforces the distribu-
tion accordingly.

4.2. External research use
A number of external researchers have already made con-
siderable use of OpenPiton. In a CAD context, Lerner  
et al.10 present a development workflow for improving pro-
cessor lifetime, based on OpenPiton and the gem5 simula-
tor, which is able to improve the design’s reliability time 
by 4.1×.

OpenPiton has also been used in a security context as a 
testbed for hardware trojan detection. OpenPiton’s FPGA 
emulation enabled Elnaggar et al.5 to boot full-stack Debian 
Linux and extract performance counter information while 
running SPEC benchmarks. This project moved quickly 
from adopting OpenPiton to an accepted publication in a 
matter of months, thanks in part to the full-stack OpenPiton 
system that can be emulated on FPGA.

Oblivious RAM (ORAM)7 is a memory controller designed 
to eliminate memory side channels. An ORAM controller 
was integrated into the 25-core Piton processor, providing 
the opportunity for secure access to off-chip DRAM. The con-
troller was directly connected to OpenPiton’s NoC, making 
the integration straightforward. It only required a handful 
of files to wrap an existing ORAM implementation, and once 
it was connected, its integration was verified in simulation 
using the OpenPiton test suite.

4.3. Educational use
We have been using OpenPiton in coursework at Princeton, in  
particular our senior undergraduate Computer Architecture  
and graduate Parallel Computation classes. A few of the 
resulting student projects are described here.

Core replacement. Internally, we have tested replace-
ments for the OpenSPARC T1 core with two other open 
source cores. These modifications replaced the CCX 
interface to the L1.5 cache with shims which translate 
to the L1.5’s interface signals. These shims require very 
little logic but provide the cores with fully cache-coherent 
memory access through P-Mesh. We are using these cores 
to investigate manycore processors with heterogeneous 
ISAs.

Multichip network topology exploration. A senior under-
graduate thesis project investigated the impact of interchip 
network topologies for large manycore processors. Figure 7 
shows multiple FPGAs connected over a high-speed serial 
interface, carrying standard P-Mesh packets at 9 gigabits 
per second. The student developed a configurable P-Mesh 
router for this project which is now integrated as a standard 
OpenPiton component.

MIAOW. A student project integrated the MIAOW 
open source GPU2 with OpenPiton. An OpenPiton core 
and a MIAOW core can both fit onto a VC707 FPGA 
with the OpenPiton core acting as a host, in place of 
the Microblaze that was used in the original MIAOW 
release. The students added MIAOW to the chipset 
crossbar with a single entry in its XML configuration. 
Once they implemented a native P-Mesh interface to 
replace the original AXI-Lite interface, MIAOW could 
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by using Amazon AWS F1 instances, more core types 
plugged into the OpenPiton infrastructure, and integra-
tion with other emerging open source hardware projects. 
OpenPiton has demonstrated the ability to enable research 
at hardware speeds, at scale, and across different areas of 
computing research. OpenPiton and other emerging open 
source hardware projects have the potential to have sig-
nificant impact not only on how we conduct research and 
educate students, but also design chips for commercial and 
governmental applications.
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directly access its data and instructions from memory 
without the core’s assistance.

Hardware transactional memory. Another student proj-
ect was the implementation of a hardware transactional 
memory system in OpenPiton. The students learned about 
the P-Mesh cache coherence protocol from the OpenPiton 
documentation, before modifying it, including adding extra 
states to the L1.5 cache, and producing a highly functional 
prototype in only six weeks. The OpenPiton test suite was 
central to verifying that existing functionality was main-
tained in the process.

Cache replacement policies. A number of student groups 
have modified the cache replacement policies of both the 
L1.5 and L2 caches. OpenPiton enabled them to investigate 
the performance and area tradeoffs of their replacement 
policies across multiple cache sizes and associativities in 
the context of a full-stack system, capable of running com-
plex applications.

4.4. Industrial and governmental use
So far we are aware of multiple CAD vendors making use of 
OpenPiton internally for testing and educational purposes. 
These users provide extra confidence that the RTL written 
for OpenPiton will be well supported by industrial CAD 
tools, as vendors often lack large scale designs to validate 
the functionality of their tools. In government use, DARPA 
has identified OpenPiton as a benchmark for use in the 
POSH program.

5. FUTURE
OpenPiton has a bright future. It not only has active support 
from researchers at Princeton but has a vibrant external user 
base and development community. The OpenPiton team 
has run four tutorials at major conferences and numerous 
tutorials at interested universities and will continue to run 
more tutorials. The future roadmap for OpenPiton includes 
adding additional configurability, support for more FPGA 
platforms and vendors, the ability to emulate in the cloud 

Figure 7. Three OpenPiton FPGAs connected by 9 gigabit per second 
serial P-Mesh links.
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