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ABSTRACT
Philosophically, our approaches to acceleration focus on the ex-
treme. We must optimise accelerators to the maximum, leaving
software to fix any hardware-software mismatches. Today’s soft-
ware abstractions for programming accelerators leak hardware
details, requiring changes to data formats and manual memory and
coherence management, among other issues. This harms general-
ity and requires deep hardware knowledge to efficiently program
accelerators, a state which we consider hardware-oriented.

This paper proposes Software-OrientedAcceleration (SOA), where
software uses existing abstractions, like software shared-memory
queues, to interact with accelerators. We introduce the Cohort en-
gine which exploits these queues’ standard semantics to efficiently
connect producers and consumers in software with accelerators
with minimal application changes. Accelerators are even usable in
chains which can be runtime reconfigured by software. Cohort sig-
nificantly reduces the burden to add new accelerators while main-
taining system-level guarantees. We implement a Cohort FPGA
prototype which supports SOA applications running on multicore
Linux. Our evaluation shows speedups for Cohort over traditional
approaches ranging from 1.83× to 8.38× over MMIO, and from
1.69× to 11.24× for DMA baselines. Our software-oriented batching
optimisations within Cohort also improve performance from 2.32×
to 8.10×, demonstrating the power of SOA.
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• Computer systems organization→Multicore architectures;
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Figure 1: Proposed Cohort System Design

1 INTRODUCTION
To meet users’ efficiency and performance demands, systems-on-
chip (SoCs) feature many efficient, specialised accelerators along-
side general-purpose cores [16, 21, 37, 39, 62, 81]. The architecture of
these SoCs suggests the accelerators are subservient to the general-
purpose cores, which manage their memory allocation, schedul-
ing, and communication. One could thus view this as a software-
oriented SoC rather than an accelerator- or hardware-oriented one.
However, we argue that the system is driven by the demands of ac-
celerators, which have special needs and frustratingly bespoke pro-
gramming paradigms, lacking commonality [4, 23, 31, 46, 52, 61, 73]
and requiring more code with each additional accelerator. Further,
the hardware accelerators cannot be easily composed together since
layers of privileged software must mediate communication. If het-
erogeneity is to further grow, we must find more efficient means for
management of and communication with hardware accelerators.

Due to accelerators’ piecemeal adoption, their software and hard-
ware interfaces are routinely afterthoughts. There is little consid-
eration for hardware or software approaches which are common
across accelerators and smooth adoption. An ideal approach would
feature:

• A common, flexible hardware interface to efficiently com-
municate between software and hardware elements.

• A software paradigm using existing abstractions to minimise
software modification to add new accelerators.
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We introduce an approach, termed Software-Oriented Accelera-
tion, to emphasise that accelerator communication, isolation, and
memory management respect existing software paradigms. Our
chosen software abstraction is shared-memory queues, with which
we reduce hardware and software overhead and ease accelerator
adoption. Our system design (Figure 1) has cores and accelera-
tors communicating arbitrarily as peers, forming a Cohort. This
enables accelerator composition without software imposition, a
pattern which has been underutilised to date.

The Cohort SOA model focuses on accelerators which follow a
stream/buffer in and stream/buffer out (SBIO) communication pat-
tern. Many accelerators follow this model, using memory-mapped
I/O (MMIO) or direct memory access (DMA) to consume and pro-
duce buffers or streams of data [26, 43, 47, 52, 75]. For accelerators
with broader communication patterns than SBIO (e.g., GPGPUs or
sparse graph and neural network accelerators [7, 39, 59, 62, 72]),
Cohort can enable more efficient communication for the use cases
which are SBIO.

Cohort provides a common, standard queue interface both
to software and to hardware, enabling reuse both of existing
multithreaded software and of existing hardware accelera-
tors with little to no modification. To bridge between software-
friendly shared-memory queues and hardware-friendly interfaces,
we created the Cohort engine. With it, existing software produces
data into queues for consumption by hardware or software without
special memory allocation routines, cache coherence management,
etc. Likewise, accelerators are connected unmodified with exist-
ing, high-performance, latency-insensitive [12, 13, 71] hardware
interfaces including AXI-Stream [3].

We implement Cohort on an SoC using the native coherence pro-
tocol to enable efficient operation. Cohort’s primitives could also
be implemented atop emerging cache coherent interconnects be-
yond the SoC scale, e.g. CXL, CCIX, and CAPI [15, 70, 74]. We have
implemented a software-oriented SoC prototype on FPGA with
RISC-V cores booting Linux and accelerators connected via Cohort
engines (shown in Figure 2. Our evaluation tests lightly modified
software running on Linux, communicating between accelerators
and software threads with no consideration for the nature of the
producer or consumer on the other side of the queues.

Our paper makes the following contributions:

• The software-oriented acceleration approach, using existing
communication, isolation, and memory management from
software to manage hardware accelerators.

• The identification of queue coherence semantics to enable ef-
ficient hardware support for software shared-memory queues.

• Implementation of a Cohort-enabled SoCwith Linux support
and multiple integrated accelerators.

• SHA benchmark speedup from Cohort’s Engine and API
range from 5.44× to 8.38× over MMIO and from 7.27× to
11.24× over coherent DMA baselines.

• Open-source hardware and software of Cohort available at
https://github.com/cohort-project

2 MOTIVATION
Having built and programmed many heterogeneous SoCs, we have
found issues across the stack. Here we describe how they motivated
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Figure 2: Cohort FPGA prototype with AES and SHA acceler-
ators

us to create a more software-oriented SoC design approach. These
tie to the two key features mentioned in Section 1: a common,
flexible hardware interface, and a software-friendly programming
paradigm.

2.1 Software Programmability Issues
Accelerator vendors provide varying software interfaces [29, 30, 36,
45, 49]. Some provide compiler passes or domain specific languages,
some call into privileged kernel modules, and others adopt vendor-
specific libraries, making for a fragmented software environment.
To exploit multiple vendors’ accelerators becomes difficult, requir-
ing a variety of bespoke expertise. This results in fragile software,
as vendors’ requirements conflict, if composition is at all possible.

We have also been challenged bymemory allocation andmanage-
ment for accelerators. It is routine for new accelerators to require
special memory allocations or the addition of manual cache flush-
ing [52, 59, 74]. These requirements come for a variety of reasons,
including accelerators’ use of IOMMUs, differing coherence models,
and special addressing and alignment constraints. As a result, the
task of complexity management falls to software.

In existing SoCs which use MMIO to configure and interact with
accelerators and I/O devices, MMIO loads and stores have special
semantics which hurt performance. MMIO operations have side ef-
fects, meaning that they cannot be performed speculatively and that
interrupts generally should not be taken while they are outstand-
ing in the memory system. Many cores, particularly slim in-order
ones, will simply stall on these until a load or store returns from
the accelerator or device. This behaviour is often relied on for syn-
chronisation, with the return guaranteeing that an operation has
completed. In terms of programmability, performing these MMIO
operations from user mode is fraught with problems to ensure that
operations are not optimised out or reordered by the compiler. We
argue that MMIO is undesirable for performance and programma-
bility and believe this is backed up by other recent approaches in,
for example, high-performance networking, where shared-memory
queues have replaced such operations [57, 80].
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2.2 Hardware Interfacing Issues
It is now essential to optimise the data-movement interface, both
between cores and accelerators and among accelerators. Coarse-
grained accelerators in SoCs today are connected in variousways [14,
39, 59]. Some act as MMIO devices, with private registers or memo-
ries that are filled prior to invocation, and read out upon completion.
Others use DMA engines, programmed prior to invocation, to fetch
data from and store data to memory.

Accelerators also vary in their coherence models, often operating
partially- or non-coherently, which complicates software. While
fully-coherent accelerators are convenient, they have costs from
participating in cache-coherence. Balancing these models is suf-
ficiently complex that research has even been done on machine
learning techniques to choose between them [83].

In desktop- and server-class settings with PCIe, protocols like
CCIX, CXL, and CAPI [15, 70, 74] enable accelerator cache coher-
ence. However, building on PCIe brings overhead and latency, mean-
ing applications with strict latency requirements usually perform
poorly. Neugebauer et al. [58] characterised end host networking
and found that for a 128B payload, 90% of the observed 1000ns
round-trip latency comes from PCIe itself. In addition, coherence
systems like CCIX can offload coherence management to acceler-
ators, meaning coherent access to accelerator-managed memory
regions is PCIe topology dependent, which further complicates the
system [15]. Many mobile-class SoCs limit use of PCIe due to its
power and area, relying instead on native (shared) memory for
many of their accelerators and peripherals [54, 55, 60, 65, 66].

3 COHORT APPROACH
3.1 Software-Oriented Acceleration Philosophy
At a high level, SOA reuses existing software mechanisms for com-
munication and application design. Software is routinely optimised
in unforeseen ways to drive performance and efficiency. Using pro-
gramming languages’ and libraries’ existing abstractions, we enable
new avenues for optimisations across many hardware accelerators.
We need not adopt special I/O operations, memory and cache man-
agement, or complex accelerator-specific drivers, unlike existing
approaches [52, 59].

SOA is user mode-oriented to give applications and language run-
times greater flexibility, isolation, and security. Mechanisms which
provide kernel interposition are preferred as they enable enforcing
system-level policy, profiling, etc. However, encouraging user-level
operation should not fundamentally require context switches and
kernel interaction for operation, which hurt performance.

3.2 Queue Coherence
In Cohort, we adopt shared-memory queues as the lingua franca of
our heterogeneous SoC, as shown in Figure 1. In high-performance
parallel software, shared-memory queues enable the decoupling
of threads to gain parallelism [53, 76]. We work to provide a com-
mon producer-consumer communication abstraction in order to
improve programmability and composition, and to enable new
performance tuning opportunities. Cohort users replace existing

1 fifo_t *fifo = fifo_init(...);

2 pid_t pid = fork();

3 if (pid == 0) { // producer

4 push(element, fifo);

5 } else { // consumer

6 element = pop();

7 printf("element: %d\n", element);

8 }

Figure 3: Generic producer-consumer code snippet

Table 1: Cohort API Listing

Existing generic SPSC queue API calls
int fifo_init(int element_size, int queue_length);
void push(int element, fifo_t *q);
int pop(fifo_t *q);
int fifo_deinit(fifo_t *q);

Additional Cohort-specific API calls
int cohort_register(int acc_id, fifo_t *acc_in, fifo_t *acc_out);
int cohort_unregister(int acc_id, fifo_t *acc_in, fifo_t *acc_out);

queue-decoupled software threads with accelerators while main-
taining their existing code and its chains of queues connecting
producers and consumers.

Many parallelisation techniques rely on the queue-based producer-
consumer design pattern for communication and decoupling [33,
37, 38, 51, 61, 69, 78]. Producers and consumers maintain a com-
mon queue for communication of data and synchronisation. When
available, the producer hands data to the consumer by pushing it
into the queue. When a consumer is able to process more data, it
pops it from the queue. The producer-consumer design pattern is
used in both shared-memory multithreaded applications and for
inter-process communication by sharing a small memory region be-
tween the processes for the queue. Figure 3 shows a simple example
code snippet following the generic queue API shown in Table 1.

Much effort has gone into developing high-performance lock-
free queue libraries. These libraries provide performance by min-
imising coherence effects and taking advantage of the memory-
level parallelism of modern cores. With their widespread use, these
queues’ semantics are well understood and ready to be exploited in
Cohort.We focus here on lock-free single producer-single consumer
(SPSC) queues, which are supported in widely-adopted software
libraries [11] and further boost performance.

We introduce the term Queue Coherence to refer to the se-
mantic behaviour of SPSC queues. In existing libraries, there is an
agreed meaning to enqueue/push and dequeue/popwith respect to
both cache coherence and memory consistency. When the producer
completes an enqueue and the consumer observes a change in the
queue’s write pointer, there is a guarantee that the consumer will
also observe the updated data items in the queue. Cohort exploits
queue coherence by implementing queue operations in an engine
connected to the cache coherence system. This enables software
to operate as designed while feeding accelerators with the highest
performance and efficiency that general-purpose cores offer.
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1 fifo_t compute_fifo = fifo_init(...);

2 fifo_t result_fifo = fifo_init(...);

3 cohort_register(acc, compute_fifo, result_fifo);

4 push(acc_in_elem, compute_fifo);

5 int acc_out_elem = pop(result_fifo);

6 printf("element is %d\n", acc_out_elem);

Figure 4: Producer-consumer code snippet for Cohort with a
single accelerator

1 fifo_t encrypt_fifo = fifo_init(...);

2 fifo_t hash_fifo = fifo_init(...);

3 fifo_t result_fifo = fifo_init(...);

4 cohort_register(encrypt_acc, encrypt_fifo, hash_fifo);

5 cohort_register(hash_acc, hash_fifo, result_fifo);

6 push(data, encrypt_fifo);

7 int chain_result = pop(result_fifo);

Figure 5: Producer-consumer code snippet for Cohort accel-
erator chaining

3.3 Software-Hardware Composition
Cohort enables replacement of a software thread with a Cohort
engine to enable transparent acceleration, as Figure 4 shows. This
“accelerator thread” communicates with our software threads in
the same way that another software thread would. Instead of lean-
ing on complex accelerator management code and driver support,
offloading computation to a Cohort-enabled accelerator is as trans-
parent as pushing data into the software queue connected to the
accelerator’s input. To receive results back, the software thread
simply pops data from another software queue connected to the
accelerator’s output.

In addition, the interoperability brings the benefit of transparent
accelerator chaining, enabling chaining of a series of computations
through several accelerators, whilst being transparent to software.
If we have a hashing and an encryption accelerator, then to perform
an encryption followed by a hash, we only need the code snippet
in Figure 5.

Our approach, introducing Cohort, provides this exact ease of
programming. With a minor addition in the form of the queue
registration routine (which does not modify the underlying mem-
ory allocation and could be incorporated into the queue library),
software queues are connected to Cohort units on-chip, ready for
production and consumption by accelerators. This enables runtime
reconfiguration of the hardware, with accelerator chains created
dynamically by software. The programmer can maintain their high-
level producer-consumer abstraction while incrementally moving
functionality to hardware accelerators.

4 COHORT IMPLEMENTATION
This section explains the implementation of Cohort and its inte-
gration into the SoC as well as the library and operating system
support we developed to enable booting SMP Linux on the Cohort
SoC on FPGA.

Memory Transaction Engine

Consumer Endpoint Producer Endpoint

Accelerator

P-Mesh Networks on Chip

Uncached Registers
Configuration P-Mesh TRI

Load Store Invalidation Load Store Invalidation

L1.5 Cache

MMU

Figure 6: Cohort Engine Architecture

4.1 Programming Model
Cohort is designed for use from user mode with minimal operating
system involvement. There is a single Cohort driver to support
all Cohort-enabled accelerators, regardless of the variety of accel-
erators available. This is in contrast to many existing accelerator
drivers which grow the size and complexity of our trusted software
over time.

To support maximally transparent use of SPSC queues, the Co-
hort engine features an MMU compatible with the cores’ ISA’s
MMU. In a modern SoC, such an MMU is low cost and its bene-
fits are significant, as we show in Section 6. Queues are virtually
contiguous and are accessed sequentially, which significantly im-
proves TLB hit rates. Beyond this, Cohort benefits from the very
same optimisations as software programmers adopt for multicore
performance. E.g. If the programmer adopts huge pages in their
queue library, the Cohort MMU will take advantage of them and
see performance improvements just as cores would.

4.1.1 Queue Descriptors. A common goal for high-performance
software is to choose a queue structure that minimises coherence
traffic. Software queues are thus organised in a variety of ways that
Cohort must support. To register a queue with Cohort, its structure
must be described to properly configure the Cohort engine. For
Cohort to achieve broad compatibility, desirable features of SPSC
queues include configurable element size, configurable queue size,
and use of read and write indices versus pointers.

To support a range of queue formats, we develop a queue descrip-
tor struct which the queue library developer uses to describe their
queue. The descriptor also contains (virtually addressed) pointers
to the queue elements in question, such as the read or write index.
At present, we support the following attributes for the queue.

• write_pointer/index
• read_pointer/index
• fifo_base_address
• fifo_element_size
• fifo_length

4.1.2 User-Mode API. Figure 7 shows a code snippet demonstrat-
ing the Cohort user-mode programming interface. The program-
mer starts by allocating two cohort-enabled queues with queue
descriptors in their fifo_t structures from their queue library.
The programmer then registers the two queues connected to a
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1 fifo_t *sw_to_cohort = fifo_init(...);

2 fifo_t *cohort_to_sw = fifo_init(...);

3 cohort_register(acc_id, sw_to_cohort, cohort_to_sw);

4 push(0xcafedeed, sw_to_cohort);

5 uint64_t result = pop(cohort_to_sw);

6 cohort_unregister(acc_id, sw_to_cohort, cohort_to_sw);

Figure 7: Cohort API usage example

Cohort-enhanced accelerator by calling the cohort_register sys-
tem call with the ID of the accelerator to be used plus its input
and output queues. From that point, the standard push and pop
functions from their queue library are used to feed data to and
from their accelerator. At the end of the application, they then
call cohort_unregister to end their use of the queues with the
accelerator by again providing its ID and input and output queues.

From the programmer’s perspective, the programming experi-
ence is extremely close to programming for an everyday multi-
threaded environment. Unlike existing approaches which either
expose complexity to the programmer or try to hide it in allocation
routines and syscalls, Cohort-enabled library code continues nearly
unmodified. The queue library developer simply describes their
queue via a Cohort queue descriptor to make the queue usable by
the programmer, with no need for specialised memory allocation or
deallocation routines. The only addition are the cohort_register
and cohort_unregister syscalls provided by the Cohort kernel
driver. A generic representation of the existing queue APIs onwhich
Cohort can be built is shown in Table 1 alongside the two new API
calls required for Cohort.

Queue Library Support. Thanks to Cohort’s flexible queue de-
scriptors, it is reusable in a variety of queue settings. As noted
in Section 3.2, SPSC queues are commonly adopted in software
libraries. We designed Cohort’s hardware based on established
queue implementations in software and thus have seen remarkably
straightforward development and integration. While our evaluation
uses a hand-rolled C implementation, we have also demonstrated
Cohort’s cohesive integration with a high-level software library
by implementing support in the C++ Boost Lockfree library to
communicate with Cohort-enabled accelerators [11].

4.2 Cohort Engine
Thanks to queue coherence, the Cohort engine bridges from software-
level thread-safe queue operations to simple hardware queues with
latency insensitive interfaces, including standard valid/ready FIFOs
and AXI Stream [3, 12, 13, 71]. The designer chooses where to place
the Cohort engine in their cache coherence system, how to opti-
mise it for their specific needs, and uses it to hide coherence system
details from the accelerators. For SBIO accelerators, Cohort does
not require the accelerator to have any knowledge of cache coher-
ence. Instead, the accelerator connects to two latency-insensitive
endpoints provided by the Cohort engine, for consumption of input
and production of results. When data is available, it is provided by
the Cohort engine and otherwise the accelerator avoids polling.

As shown in Figure 6, Cohort is separated into several functional
units, each handling a specific task. Our prototype Cohort engine

is integrated into the P-Mesh cache coherence system of Open-
Piton [8, 10], which is an open-source tile-based SoC framework.
The components of P-Mesh that Cohort directly interacts with are
shown in orange at the top of the figure. Cohort itself is rendered
in blue in the centre of the figure, while the connected accelerator
is shown at the bottom in green. Cohort is integrated on its own
tile within the SoC: a zoomed out view of a complete SoC is shown
in Figure 2.

The Cohort Engine has a few main components: uncached con-
figuration registers, the Memory Transaction Engine (MTE) which
contains the MMU, a Consumer endpoint, and a Producer endpoint.
CPU cores may configure Cohort through its uncached configura-
tion registers, which are the only MMIO component of Cohort. The
producer and consumer endpoints are responsible for generating
queue operations. When the endpoints need to communicate with
memory, the MTE translates from higher level memory operations
and invalidations to physically addressed coherence operations.
The endpoints effectively translate the software queue structure
into a data stream for the connected accelerator to handle, with a
hardware-friendly interface.

4.2.1 Consumer Endpoint. The consumer endpoint is the point
of ingress for data into the accelerator. Following registration of a
queue with the Cohort engine, the consumer endpoint performs the
coherence operations needed to track the read and write pointers of
the SPSC queue. When the write pointer is updated by the queue’s
producer (from software or hardware), the consumer endpoint
receives an invalidation, which is its signal to fetch new data for
the accelerator. To reduce coherence effects, our implementation is
optimised to wait a configurable period. Once the endpoint has the
data, it sets its valid signal to the accelerator high and waits for the
accelerator to be ready. Once the accelerator receives the data, the
consumer endpoint updates the queue’s read pointer accordingly,
which is communicated to the producer via the coherence system.

4.2.2 Producer Endpoint. The producer endpoint performs the re-
ciprocal operations of the consumer endpoint. When the accelerator
produces data (its valid signal goes high) and the queue is not full,
the accelerator will take the data, store it into the queue, and then
update the write pointer. Both operations are performed with appro-
priate consistency guarantees and the updates are communicated
to the consumer via the coherence system.

4.2.3 Semantics and Coherence. As discussed in section 3.2, SPSC
queues signal elements being pushed or popped by changing the
write or read pointer, respectively. When a Cohort or software
endpoint alters a pointer in the queue structure via the MTE, it
means that elements are being pushed to or popped from the queue,
following software semantics. In the SoC’s microarchitecture, we
assume that the coherence system will cause the line to be invali-
dated in other caches, which acts as a signal to Cohort endpoints
to look for an update.

We exploit this behaviour in two ways for Cohort to transpar-
ently observe the changes made by software. The Reader Coherency
Manager (RCM) monitors an address passed from the uncached
registers for incoming invalidations. Whenever an invalidation
matches the address the RCM monitors, it enters the backoff state.
The length of the backoff is controlled by the backoff unit. After the
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backoff ends, the RCM issues a coherent read to bring the most up
to date copy of the data. Consistency is guaranteed by the writer
ordering the data write before the pointer write using appropri-
ate fences or store semantics, which is the standard behaviour in
lock-free SPSC queue libraries. Just as the software library does,
the Write Coherency Manager (WCM) carefully orders its write
operations to ensure that a reader will see the update to the write
pointer before seeing the data update.

4.2.4 Cohort MMU. For our implementation of Cohort in Open-
Piton+Ariane, we include a RISC-V Sv39-compliant MMU, based
on the MMU in the Ariane core itself. This MMU enables Cohort’s
various components to make use of virtual addresses, significantly
simplifying the programming of Cohort-enhanced accelerators. As
a result of the ISA-native MMU, queues are allocatable with malloc
and the Cohort endpoints seamlessly translate VAs to PAs.

The Cohort MMU features a TLB and page table walker to max-
imise its independence from the cores in the SoC. The operating
system manages the Cohort MMU coherently with the others in
the SoC, as we describe in Section 4.4. Each MMU has the page
base pointer pointing to the root address of the page table of the
corresponding process. Upon a TLB miss, the page table walker
traverses the page table and refills the entry transparently. When
there is a page fault due to a miss in the TLB and an unsuccessful
page table walk, the Cohort MMU raises an interrupt to a core to
resolve the page fault. Once resolved, the core writes to one of two
MMU registers: the first simply resolves the fault and requires the
page table walker to complete its own page table walk, while the
second enables the core to write the page table entry directly into
the TLB. Besides these registers, the Cohort MMU’s TLB is flushed
via a write to another register, in order to maintain TLB coherence.

4.3 Accelerator Interface
Figure 6 shows the accelerator connecting to the consumer and pro-
ducer endpoints. Our prototype supports both simple valid-ready
handshakes [12, 13, 71] and AXI-Stream [3] as latency insensitive
interfaces to and from the accelerator. As the consumer endpoint
retrieves data from the queue feeding into the accelerator, it sets
its valid signal to the accelerator and waits for the accelerator to
be ready to consume the data. Similarly, the accelerator sets its
valid signal high to produce data to the producer endpoint, which
makes the corresponding updates to the queue feeding out of the
accelerator. Many SBIO accelerators are usable unmodified with the
Cohort accelerator interface, while others could have their LSUs
straightforwardly replaced with the Cohort engine.

Accelerators need not produce data with the same interface
width as it consumes data. Cohort produces and consumes data
to/from the accelerator using blocks of parameterised size, with
appropriate ratchet logic to resize data to the accelerator’s required
sizes. As an optimisation, the producer and consumer endpoints
reduce coherence traffic commensurate with the accelerator’s data
block input or output size, updating the read or write pointers by
the data block size.

Upon queue registration to initiate execution, the user is also able
to provide a data buffer akin to a control and status register (CSR)
bank to configure the accelerator. The user simply points Cohort to
the virtually contiguous data block, which the programmer formats

as an accelerator-specific struct. The Cohort-enhanced accelerator
directly receives this configuration data at registration time before
data is passed. For accelerators with CSRs configured by AXI-Lite,
Cohort also supports writing the data over AXI-Lite.

We have so far connected four accelerators into our Cohort SoC.
Section 5.2 describes the integration of three of these: SHA-256,
AES, and an H264 encoder; we have also connected a short-time
Fourier transform accelerator which we do not describe here. Each
accelerator uses valid-ready handshakes for input and output data.
We have demonstrated AXI-Stream functionality using an AXI-
Stream FIFO as a “null" accelerator, which is easily replaceable with
a more complete accelerator.

4.4 OS Support
Cohort provides a kernel driver to establish a complete and safe
data flow and to abstract hardware details from the user. It shrinks
the user space API to Queue Coherent semantics only and passes
the low-level details to kernel via two simple system calls. Unlike
many embedded accelerator environments, user space may not
touch Cohort’s configuration registers and need not be aware of
physical addressing. This, in turn, justifies the usage of Cohort
further, as functionality is solely, but safely implemented via the
Cohort driver, without the need of wrappers. This also simplifies the
usage of multiple Cohort engines using established OS abstractions.
Our driver supports the following features:

• MMU notifier for TLB flushes. To maintain TLB coherence,
Cohort’s ISA-native MMU is also flushed alongside cores’
TLBs. To enable this, MMU notifiers in Linux, normally used
by platforms with IOMMUs, unified virtual memory, or hy-
pervisors. The Cohort kernel driver registers its TLB flush
function with an MMU notifier for processes at queue regis-
tration.

• Page fault resolution via interrupt. As noted in Section 4.2.4,
when the Cohort MMU sees a page fault, it triggers an inter-
rupt and invokes a handler registered by the Cohort kernel
driver.

• Registering queues with Cohort.When a user mode applica-
tion calls cohort_register, the driver virtually maps the
Cohort engine’s configuration register bank and registers
the MMU notifier and page fault handler. Then, the driver
writes the queue descriptor information to Cohort. After this
simple syscall, the requested Cohort engine is ready to use.

• Unregistering queues from Cohort. Calling
cohort_unregister deallocates and unmaps the prior re-
sources.

The driver is first probed at kernel boot time to request interrupts
and MMU notifier resources. When applications launch, they call
cohort_register to register queues. The applications then push
and pop data to and from Cohort via the registered queues. User
space applications invoke cohort_unregister at exit to clear the
allocated memory and MMU notifier service.

4.5 Cohort Capabilities and Extensions
Inter-thread and Inter-process Communication. Cohort is able

to accelerate inter process communication with the same queue
abstraction, just as two software threads can communicate via a
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shared-memory queue. Such communication is commonly done
by allocating the queue once and sharing its memory across two
processes. This enables Cohort to receive input data from one pro-
cess and produce output to another using the same push and pop
methods as within a single process.

Accelerator Chaining. As more workloads necessitate hardware
acceleration, accelerator chaining is a perfect way to accelerate
complex computations. Cohort supports chaining together multi-
ple accelerators using SPSC queues, bringing acceleration to more
diverse workloads with minimal overhead and great flexibility. As
an SoC designer moves to add new accelerators to their system,
they can take existing decoupled software threads and directly re-
place them with Cohort-enhanced accelerators. The queues that are
already used to communicate with the software thread are main-
tained, but registered with the relevant Cohort engine instead. This
accelerator chaining capability also enables runtime reconfigura-
tion of accelerator chains based on applications’ needs.

Multi Producer/Consumer. Cohort sticks with the SPSC model, es-
sentially a restricted dataflow where queues are not split or merged.
Enabling queues supporting multiple producers or multiple con-
sumers would provide value for a broader set of multithreaded use
cases and for multiple accelerators to process data to/from a single
queue. Generally these queues require atomic memory operations
to guarantee correct operation, for which there is somewhat less
standardisation of queue organisation. As a result, we leave support
for these queues and design of their queue descriptors to future
work.

5 EVALUATION METHODOLOGY
This section details our methodology, accelerator configurations,
and benchmarks. We integrate Cohort into OpenPiton [8–10] and
boot Linux (v5.6-rc4) on a Xilinx Alveo U200 FPGA running at
100 MHz. We use a four tile design with two 64-bit 6-stage Ariane
RISC-V RV64GC cores and two accelerators (shown in Figure 2).
We use the default OpenPiton configuration of 8KiB L1D, 16KiB
L1I, 8KiB L1.5, and 64KiB 4-way L2 caches. The Cohort TLB has
16 entries and the producer and consumer endpoint accelerator
interfaces are 64-bit wide. We use a minimal user-mode driver for
our experiments.

5.1 Baselines
For our baselines, we repurposed a MAPLE decoupling unit [61] to
connect with accelerators. In its original setting, MAPLE is an out-
of-core, highly memory parallel load-store unit. It is designed to en-
able efficient data movement in manycores with slim in-order cores.
Its particular focus is decoupled access-execute multithreading and
prefetching models for applications with many indirect memory ac-
cesses, like graph processing. We modified MAPLE to instead host
accelerators and provide MMIO-based and coherent DMA-based
invocation (two common approaches). Performance counter data
comes from each Cohort Engine, Ariane core or MAPLE unit.

MMIO Baseline. For some workloads, an MMIO-based invocation
can make sense, as queue contents are not saved in cache and
are hence disconnected from the coherence system. However, as

noted in Section 3.2, MMIO often requires non-speculative round-
trips from core to accelerator for each data word, a fact that was
highlighted in the original presentation of MAPLE [61]. We use
MAPLE’s MMIO queue interface to provide data to and collect data
from the accelerator with no coherence effects.

Coherent DMA Baseline. DMA enables bulk data movement be-
tween memory and the device without host interference. The DMA
must be enabled and programmed by a core, and accelerators must
still wait for sufficient data to operate. We use MAPLE’s coherent
LLC data prefetching feature to provide data to the accelerator
and use the P-Mesh TRI [9] to coherently store results. Note that
MAPLE’s coherent DMA is more software efficient than typical
DMA approaches as it uses a RISC-V MMU rather than requiring
an IOMMU.

5.2 Accelerators
We adopt SHA-256, AES-128, and H264 accelerators for their stream-
ing yet computationally-intensive nature. Their continuous data
flow makes good use of the Cohort interface, while their computa-
tional complexity justifies acceleration. Figure 2 shows our Cohort
SoC with two accelerators connected: SHA-256 and AES.

SHA-256. The first accelerator is an open-source SHA-256 cryp-
tographic core [24], which is usable from Linux. Our accelerator
accepts input in 512 bit data blocks and hashes them to a 256 bit
irrevertible hash digest [27]. The accelerator accepts incoming 64
bit data blocks from the consumer endpoint and uses a ratchet to
build a 512 bit input block. The hash digest is fed back using a
ratchet to the producer unit in four chunks of 64 bits.

AES-128. Advanced Encryption Standard (AES) is a symmet-
ric encryption algorithm [28]. In our prototype, we connected an
open-source accelerator for AES encryption [2] which generates a
ciphertext in blocks of 128 bits with a key of the same width. With
Cohort we added a ratchet to consume 128 bits of data from 64 bit
chunks from the consumer endpoint and the reverse for sending
encrypted ciphertext to the producer endpoint. The encryption key
is passed via a coherent CSR struct as described in Section 4.3.

H264 Encoder. H264 is a video compression standard widely used
in the video industry. It provides good video quality at significantly
reduced bitrates. We integrated an H264 encoder from Zexia [79]
(using Context-adaptive variable-length coding or CAVLC) with the
Cohort engine and confirmed its correct operation. This example
also illustrates how Cohort can handle variable input size. The
existing instance of the accelerator that we adopted accepts the
number of frames at the start of its input to enable variable input
length. The integration code includes a ratchet to prepare each
frame for H264 in a similar manner to AES and SHA.

5.3 Benchmarks
To characterise the Cohort Engine, we run benchmark applications
and test the entire system. Benchmark parameters are illustrated
in Table 2.

Here batch size refers to an optimisation that updates the read
and write pointers in batches instead of incrementally. This helps to
reduce the coherency traffic in the system and improve performance.
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Table 2: Benchmark Tuning Parameters.

Accelerators of Interest AES, SHA

Communication Modes Cohort, MMIO, DMA

Min/Max Queue Size 64/8192 elements

Min/Max Batching Factor 2/64 elements

Baseline DMA Granularity 256 Bytes

This is an optimisation that would be applied to multithreaded
software but is also exploitable by Cohort, demonstrating Software-
Oriented Acceleration in action. Below, we briefly describe our
benchmark applications.

Benchmark Implementation in Cohort. Benchmarks in Cohort
initialise the SPSC queues then push and pop the data in sequence.
To hash 1 block of text we push 64 bits of data 8 times and fetch
the corresponding hash with 4 pops. For AES, there are 2 pushes
and 2 pops. As mentioned earlier, we encapsulate these movements
into batches and run applications until queue size is reached.

Benchmark Implementation in Baselines. Benchmarks for our
baselines are logically similar to Cohort’s, but more complicated
in their implementation. With MMIO, the core cannot achieve
memory-level parallelism and so must receive the accelerator’s
output word by word before passing the next input word. This
affects performance versus Cohort which can interleave input/out-
put and expose MLP within batches. With Coherent DMA, special
API functions (also containing MMIO writes) are called for each
data block to be copied to/from the modified MAPLE unit, which
matches common DMA programming mechanisms.

6 RESULTS
The goal of our evaluation is to demonstrate Cohort in a realistic
heterogeneous SoC with multicore Linux support while providing
a combination of programmability and performance improvements
over the state-of-the-art (SOTA).

6.1 Latency Analysis
Figure 8 illustrates the latency to queue size relationship for our
SHA benchmark running with different batch sizes and commu-
nication APIs. “Cohort batch=N” indicates the Cohort application
optimisation of batching its write/read pointer updates to occur
only after N elements have been copied into the queue. The same
goes for AES in Figure 9.

Across the board, Cohort outperforms the MMIO and Coherent
DMA baselines for the SHA application. Over all queue sizes tested,
Cohort performs the best with larger batches and the batching
optimisation works robustly. Cohort starts at a batch size of 8
elements to reflect one SHA input of 512 bits. Table 3 shows the
speedup for Cohort AES and SHA with 64 element batches over
the baselines as well as the improvement within Cohort brought by
batching. The speedup brought by Cohort on SHA versus MMIO
and DMA ranges from 5.44× to 8.38× for MMIO and from 7.27×
to 11.24× for DMA. For SHA, batching increases performance by
2.32× to 3.33×.
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Figure 8: Latency in kilocycles to execute the SHA bench-
mark. X axis shows total number of queue elements, Y axis
shows time in kilocycles (lower is better). Cohort batches
queue elements in groups of 8 to 64.

Table 3: Summary of peak speedup for Cohort with AES and
SHA (Cohort batch=64). Cohort shows consistent speedup
over both baselines.

Queue size 4 128 256 512 1024 2048 4096 8192

SHA Speedup

Vs MMIO 5.44 6.05 6.75 7.22 7.62 8.30 8.38 7.16
Vs DMA 7.27 7.94 8.85 11.24 10.70 10.83 10.62 8.97
W/ Batching 2.32 2.45 2.65 2.79 2.96 3.01 3.33 2.81

AES Speedup

Vs MMIO 2.0 1.89 1.84 1.83 2.07 2.03 2.03 1.86
Vs DMA 1.9 1.83 1.74 1.71 1.75 2.03 1.94 1.69
W/ Batching 5.3 6.05 7.11 7.16 8.02 7.99 8.10 7.42

For AES, Cohort improves over the baselines as batch size in-
creases. Batch sizes larger than 16 elements always perform equal
or better than both MMIO and DMA baselines. Table 3 shows a
range in speedup from Cohort on AES versus MMIO and DMA
ranging from 1.83× to 2.07× for MMIO and from 1.69× to 2.03× for
DMA. For AES, batching increases performance by 5.30× to 8.10×.
The lower performance for AES comes from two factors: the first is
its symmetric data movement where AES produces output of the
same size as the input, which increases false sharing on the read
and write pointers with the Ariane core as it waits to acquire the
output data. The second factor is the accelerator’s lower latency of
41 cycles versus SHA’s latency of 66 cycles.

These numbers demonstrate the importance of how, with Co-
hort, optimisations applied in software can bring valuable speedups
at the accelerator interface. These results come in line with our
expectations in Section 3 and prove the importance of Software Ori-
ented Acceleration and the benefits of the SPSC queue abstraction
exploited by Cohort.

6.2 IPC Analysis
Beyond seeing an overall improvement in latency, we argued that
Cohort would make more efficient use of the core as it provides
data to and reads data from accelerators. Figure 10 and Figure 11
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Figure 10: Instructions Per Cycle (IPC) speedup of Cohort
over the baselines achieved while executing the SHA bench-
mark. X axis shows total number of queue elements, Y axis
shows IPC speedup (higher is better). Cohort uses a batching
factor of 64.

show significant improvements in IPC for Cohort over the MMIO
and DMA approaches, where cores must make MMIO round trips
to communicate with the accelerators. Cohort provides a peak IPC
speedup for Cohort SHA over MMIO and DMA of 4.42× and 2.11×.
For AES, Cohort achieves a peak speedup in IPC over MMIO and
DMA of 2.83× and 1.77×, respectively. These numbers validate that
Cohort better utilises the core while data transfer is occurring.

6.3 Area Overhead
We perform FPGA implementation with Xilinx Vivado 2022.1 and
report post-synthesis resource utilisation in Table 4. The empty
Cohort engine comprises around 10% of the LUTs and 20% of the
registers of a Cohort tile, or less than 4% of the LUTs and 10%
of the registers of an Ariane tile. A tile with an empty Cohort
Engine is about 39% and 46.6% of the Ariane tile by LUTs and
registers (both tiles feature OpenPiton’s NoC routers and L1.5 and
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Figure 11: Instructions Per Cycle (IPC) speedup of Cohort
over the baselines achieved while executing the AES bench-
mark. X axis shows total number of queue elements, Y axis
shows IPC speedup (higher is better). Cohort uses a batching
factor of 64.

L2 caches). Despite this small area, Cohort packs a punch in terms
of the functionality and features it provides.

The Cohort engine has roughly 68% the LUTs and 45% the regis-
ters of the AES accelerator while consuming no BRAM, compared
to the large memory needed for AES which would consume consid-
erable SRAM in an ASIC process (note that the AES BRAM is larger
than that of an Ariane tile with its previously stated cache con-
figuration totalling around 100KiB). The Cohort engine consumes
roughly 27% more LUTs and 57% more registers than the relatively
small SHA accelerator. Compared to the H264 encoder, the empty
Cohort engine consumes around 37% of the LUTs and 71% of the
registers. H264 consumes 4 BRAM slices (tens of kilobytes of mem-
ory) and unlike Cohort or the other accelerators, it also consumes
6 DSP slices. Full tiles including Cohort plus AES, SHA, or H264
are significantly smaller than the size of an Ariane tile.

The MMU itself is area efficient, consuming 1081 LUTs, 1206
registers, and no BRAM. Of that, the TLB makes up 911 LUTs and
1029 registers, while the page table walker makes up 168 LUTs and
109 registers. This small MMU leads to savings in memory (no need
for separate I/O page tables), runtime (less page table management
in software), and software/OS porting. While our demonstrated
accelerators are relatively small, the same MMU and Cohort engine
are usable with larger accelerators.

7 RELATEDWORK
As Moore’s Law has slowed and Dennard Scaling has ended, system
designs are increasingly exploiting heterogeneous parallelism and
domain-specific accelerators to scale performance at acceptable
power [23, 64]. Using accelerators often relies on the programmer
configuring them manually [32, 63] or through a domain specific
language, for the class of applications that are being executed [44,
82].

Decoupling of data-access and compute was originally proposed
by J. Smith [69] to mitigate latency of data-supply to processor
cores, by having a core accessing the data and feeding it to another
core, which handles the computation. After that, several hardware
implementations have been proposed, where data communication
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Table 4: FPGA Synthesis results for resource utilisation: Cohort with or compared to Ariane, MAPLE, and accelerators

Resource Ariane Empty Empty Cohort Cohort MAPLE AES SHA H264
Type Tile Cohort Cohort + AES + SHA + AES Only Only Only

Tile Engine + SHA
LUTs 67083 26390 2594 6679 4524 21066 3837 2041 6851

Registers 39879 18591 3799 12176 6064 28276 8531 2420 5341
BRAM 41.5 9.5 0 47.5 0 47.5 47.5 0 4

occurs through architectural queues [33, 51, 78]. These works aim to
hide memory latency as a simpler alternative to superscalar proces-
sors. DeSC [37, 38] repurposed decoupling to supply computation-
exclusive units like accelerators. DeSC’s programming model offers
a producer-consumer relationship between heterogeneous process-
ing units. However, DeSC uses architectural queues that are exposed
to software through new ISA instructions, which requires software
changes. Furthermore, there is a strict one-to-one relation between
supply and compute elements, determined at tapeout time.

Data streaming proposals also have this restriction. MAD [41]
andHWPEs [19, 22] have a data-access engine optimised for dataflow
computation, which is integrated with cores or accelerators to per-
form the memory-access portion of programs.

Cohort offers similar producer-consumer relationships without
restricting them in hardware, and making them transparent to
the ISA. In Cohort, accelerators can be configured at runtime to
be consuming from or producing to any core or accelerator on-
chip. This creates a more rich space of possible heterogeneous
communication patterns.

Although MAPLE [61] offers a flexible decoupling mechanism
where cores communicate via a network-connectedmemory-fetching
engine, it still requires software changes with explicit produce and
consume operations. Moreover, MAPLE’s communication scheme
resorts to side-effectful, non-idempotent memory-mapped I/O in-
structions, which sets a significant minimal latency threshold be-
tween devices. Cohort communicates using a simple software queue,
which enables greater speculation and parallelism of produce and
consume operations.

Loosely coupled and tightly coupled accelerators. Accelerators
come in different flavors and sizes, but we classify them regard-
ing their hardware integration into tighly-coupled and loosely-
coupled [20]. Often, the classification is in terms of where the
accelerator sits in the architecture, namely, close to the CPU or not.

In the tightly-coupled category, we can find accelerators as a
functional (computing) unit physically attached to the CPU pipeline
(e.g. FPU, or inline accelerators [73]), and accelerators that share the
private cache with the CPU (e.g. RocketChip [4], Hwacha [48], and
Gemmini [31]). In the loosely-coupled category, we find accelerators
placed on the main chip interconnect [14, 39, 59], or placed on a
separate chip which communicates to the chip interconnect through
an I/O interface (e.g. PCIe).

Comparison with interconnects CXL and UCIe are emerging in-
terconnect specifications that tackle host-to-host and chiplet-to-
chiplet connections respectively. Although CXL enables inter-host
coherent communication at a low latency and high throughput, it
has a large area and power overhead associated with underlying
PCIe protocol stack. By contrast, our implementation of Cohort

tackles efficient coherent communication within a single SoC. Co-
hort would also be implementable on top of the CXL coherency
systemwith the correct semantics. UCIe takes a layered approach to
accommodate challenges in die-to-die communication for emerging
chiplets. Currently the protocol layer supports four standards: PCIe
6.0, CXL3.0, CXL2.0 and raw data streaming. We envision Cohort
would be implemented on top of emerging coherency protocols
in new UCIe protocol layers, or atop CXL as previously described.
However, the control and physical layers of UCIe are out of scope
for this paper.

Area-wise, in a state of the art design such as Intel Alder Lake
fabricatedwith 7nmprocess, an 8 lane PCIe 5 PHY takes 2.4𝑚𝑚2[50].
By contrast, a high performance CPU core on the same chip with
L1 cache but without L2 cache or power gating logic takes around
5.37𝑚𝑚2, only a little over twice the PCIe PHY block size. Note
that this does not take into account the area of the PCIe controller
which would also be required.

System-level considerations. The advantage of loosely-coupled
accelerators is that they do not modify the CPU or the ISA. They
can be integrated in a relatively plug-and-play manner, through
the interconnect, overcoming the verification overhead of tightly-
coupled integration. This is aligned with trends in fast chip proto-
typing [1, 52, 77], where an SoC is made of reusable, third-party
IP blocks. However, tight-coupled accelerators have the advantage
of having the CPU dealing with VM translation. Loosely-coupled,
driver-triggered accelerators like those of ESP [52] have the strategy
to pre-fill a specialised TLB and pin memory so that no page-faults
can occur, while NVDLA [59] uses a reserved, non-cacheable mem-
ory region, that the OS cannot use, and only the accelerator and
its device driver have access to it. Cohort enjoys the advantages
of loosely-coupled accelerators while supporting VM in a more
flexible manner by incorporating a fully-capable MMU that handles
page faults and TLB shootdowns.

Programmability. While tightly-coupled accelerators are trig-
gered by ISA instructions, and thus the result goes to the register
file [4, 73], loosely-coupled ones often rely on interrupts or spin-
polling for the CPU to know that they finished. Several works
have enhanced the I/O software stacks, by reducing interrupt over-
heads [42, 67], or combining them with spin-polling as a hybrid
notification mechanism [25]. Recently, HyperPlane [57] proposed
a hardware mechanism to accelerate these notifications. However,
these techniques focus on I/O accelerators, while Cohort leverages
the coherence protocol to get notified that another processing ele-
ment has produced or consumed data, thus also supporting on-chip
accelerators. Cong et al. [17, 18] proposed an allocation protocol
to avoid OS overhead in scheduling tasks to on-chip accelerators.
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However, this still requires large workloads to be efficient, while
Cohort is also suited for finer-grain tasks.

M3 [6], M3X [5], Rackscale Microkernel [40], Solros [56] bake
hardware semantics into OS mechanisms for tight integration. All
target simple, efficient, and scalable heterogeneous communica-
tion, but implement brand new (micro)kernels (and new DTU hard-
ware [6, 40]). Cohort exploits existing OS and multi-threaded appli-
cation best practices, via well known queue semantics and enables
accelerators and cores to share queues in coherent memory for
communication. We improve performance over the baselines with
low cost and a more intuitive API. Similarly to our MMIO base-
line, DTU queues are either kept in (limited-size) scratchpads and
modified by MMIO or, similarly to our DMA baseline, are kept in
DRAM with pointers updated by MMIO and NoC messages. Both
DTU mechanisms require software changes, unlike Cohort.

Acceleration standards A number of accelerator standardisation
efforts are taking place, particularly to standardise on program-
ming models for GPGPUs and similar programmable accelerators.
Vulkan [35] and SPIR-V [34], with features like pipelined barriers,
expose deeper hardware details in a traditional, hardware-oriented
fashion, implying a deep asymmetry between the accelerators and
cores. Cohort on the other hand effectively embeds common soft-
ware semantics into the accelerator integration environment (note:
not the accelerator itself). Cohort-enabled accelerators can be de-
coupled from memory operations and act as peers to cores in a
software-oriented manner. By leveraging software semantic aware-
ness to provide a high performance API that is implementation
agnostic, we see Cohort as additional, rather than a competitor
to these solutions. For accelerators designed or programmed with
Vulkan/SPIR-V, any communication of a SBIO nature (whether
through explicit SPSC queues or other data movement behaviours)
could target a specialised Cohort engine instead of the usual LSU
for a potential uplift in performance.

Queue Libraries and Language Support Beyond adoption for Boost,
we are investigating using Cohort with Unix pipes. Of further in-
terest for high-performance, asynchronous acceleration use cases
is the Linux io_uring subsystem [68]. The io_uring API has en-
abled a variety of new high-performance I/O use cases in Linux,
particularly for networking and file I/O. Integrating Cohort with
io_uring would enable a rich runtime for managing accelerators.
More intriguingly, Cohort accelerators could also use io_uring to
request services from the kernel via their native queue interfaces.

With simple runtime support (comparable to the library support
we added for Boost), languages could automatically retarget their
queues to make use of Cohort. We leave automatic identification of
queues to future work.

8 CONCLUSION
In this paper we argue for the importance of software-oriented
acceleration, bridging the gap between hardware-centric SoCs and
software programmability. We propose Software-Oriented Acceler-
ation (SOA), an elegant and pragmatic solution for orchestrating
the ever-increasing heterogeneity of modern SoCs. To back the idea
up, we identify Queue Coherence semantics for communication
between accelerators and present the Cohort engine and API sup-
port to enhance common producer-consumer software queues in a

full-system heterogeneous environment. This concept makes SoCs
more easily programmable while remaining performant. Cohort’s
implementation spans the application to architecture stack and
shows powerful performance improvements ranging from 1.83× to
8.38× over MMIO, and from 1.69× to 11.24× for DMA baselines. The
hardware and software of Cohort, plus a subset of the accelerators,
are available open-source at https://github.com/cohort-project.
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