
METAL: Caching Multi-level Indexes in
Domain-Specific Architectures

Anagha M. Anil
Kumar*

ama241@sfu.ca
Simon Fraser University
Burnaby, BC, Canada

Aditya Prasanna*

apa120@sfu.ca
Simon Fraser University
Burnaby, BC, Canada

Jonathan Balkind
jbalkind@ucsb.edu

UC Santa Barbara
Santa Barbara, CA, USA

Arrvindh Shriraman
ashriram@sfu.ca

Simon Fraser University
Burnaby, BC, Canada

Abstract
State-of-the-art domain specific architectures (DSAs) work
with sparse data, and need hardware support for index data-
structures [31, 43, 57, 61]. Indexes are more space-efficient
for sparse-data, and reduce DRAM bandwidth, if data reuse
can be managed. However, indexes exhibit dynamic accesses,
chase pointers, and need to walk-and-search. This inflates the
working set and thrashes the cache. We observe that the cache
organization itself is responsible for this behavior.

We develop METAL, a portable caching idiom that enables
DSAs to employ index data-structures. METAL decouples
reuse of the index metadata from data reuse, and optimizes it
independently. We propose two ideas: i) IX-Cache: A cache
that leverages range tags to short-circuits index walks, and
reduces the working set. IX-cache helps capture the trade-off
between wider index nodes that maximize reach vs those that
are closer to leaf and minimize walk latency. ii) Reuse Pat-
terns: An interface to explicitly manage the cache. Patterns
orchestrate cache insertions and bypass as we dynamically tra-
verse different index regions. METAL improves performance
vs. streaming DSAs by 7.8×, address-caches by 4.1×, and
state-of-the-art DSA-cache [50] by 2.4×. We reduce DRAM
energy by 1.6× vs. prior state-of-the-art.

CCS Concepts: • Computer systems organization → Ar-
chitectures; • Hardware → Hardware-software codesign.

Keywords: Domain-specific Architectures, Caches, Dataflow
architectures, Indexes

*Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN ACM 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640402

ACM Reference Format:
Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Ar-
rvindh Shriraman. 2024. METAL: Caching Multi-level Indexes in
Domain-Specific Architectures. In 29th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24), April 27-May 1, 2024,
La Jolla, CA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3620665.3640402

1 Introduction
Limitations in technology scaling has led to a shift away from
general-purpose architectures to more specialized domain-
specific architectures (DSAs). Modern DSAs [14, 43, 49,
57, 60, 61] transform high-level programs into pipelined
dataflow graphs, utilizing specialized computation and mem-
ory blocks. To maximize memory bandwidth and space uti-
lization, currently DSAs need to work with a variety of
index data-structures such as compressed tensors [10, 27,
36, 39], trees [22], hash-tables and sets [45, 46]. Unfortu-
nately, DSAs are not equipped to capture index reuse and
only support streaming algorithms [14, 24, 57]. Some sparse
GEMM DSAs [16, 60, 61] do capture reuse, but hardwire the
cache for GEMM, and are not portable. Further, prior DSA
caches [13, 50] only target leaf reuse, and exhibit poor hit
rate due to repeated walks.

Address-based caches are a well-understood idiom for cap-
turing reuse in dynamic data structures [4, 31]. However,
they have organizational flaws. We elaborate using a text-
book index, the B+tree (Fig.1:Left). Each node includes a
set of sorted keys, along with pointers to a sub-range at the
next level. There are multiple challenges: i) Challenge 1:
Address-caches always require root-to-leaf walks, which
overflow cache capacity. In an address-cache, tag lookups
use addresses. Since each node’s address is only available
from its parent, walks always traverse the whole B+tree. Even
if a lower node is cached (e.g., 11-21), we cannot reach it
until the parent is read. Challenge 2: Address-caches are
polluted with redundant nodes. To minimize latency, the
address-cache must hold all nodes along a walk (since all are
touched). However, we could kickstart from level-3 if we
could identify it in the cache without walking the redundant
level-2 and level-1 . Challenge 3: Tradeoff between reach

and effectiveness. Upper nodes are common across walks

https://doi.org/10.1145/3620665.3640402
https://doi.org/10.1145/3620665.3640402
https://doi.org/10.1145/3620665.3640402

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

Address Cache
�--�--� Tags
� * 8 * I

___ ___JT l� x00 ..

rfi,-_*-__ 1____._s -; 21 �-: xOl ..
L::J _ ..___ __ ! x00 ..

x01 ..

*
*

Data
*

11 * 21
*
*

dJ dJ X Full Walks

X Redundancy

*
*
*
*

This Paper Index Cache
Range Tag Data Ptrs.

14 []J*-@!I*-:
H"1

-- -c_:_ Lo x00 .. x00 .. Level 7Pattern -;..___....... -· 11 21 x00 •• x00 ••

x00 .. x00 ..

-- --

(_
*
_ -�

x00 .. x00 ..

0Short Walks 0 Cache Util.
0 Reach vs. Efficiency

Figure 1. B+tree Illustration. Address Cache vs. Index (IX) Cache

and maximize reach, while lower nodes effectively short-
circuit. The choice is DSA dependent e.g., SpMM prefers
short-circuiting, while JOIN prefers reach.

METAL introduces two complementary ideas to address
the challenges of caching index data-structures: i) IX-cache
(Index Cache), a novel cache architecture that uses key ranges
as cache tags. It short-circuits index walks and reduces the
working set. ii) Reuse patterns to manage cache insertion and
bypass in IX-cache. Reuse patterns observe that index or key
space serves as an affine abstraction for expressing caching
preferences. Fig.1:Right illustrates. The IX-cache inverts the
organization of an address-cache, and the [Lo, Hi] range in
the index node constitutes the tag (previously the data-block
in the address-cache). The DSA probes the IX-cache using
index keys, and on a hit, can kickstart the walk from the
cached node closer to the leaf. Fig.1:Right, key 15 starts the
walk from cached [11-21] . Interestingly, beyond reducing
walk latency, the primary benefit of this short-circuiting is a
reduced working set. Per-tag matches require more energy
(than address-cache), but fewer accesses mean lower overall
energy.

According to the algorithm’s reuse pattern, IX-cache can
cache upper-level wider-range indexes that can short-circuit
more walks, or cache lower-level indexes that short-circuit
more effectively and minimize walk latency. While walks are
dynamic and chase pointers, patterns express caching and
bypassing on affine index features (e.g., ranges, levels). The
index features are mapped to block addresses at runtime. Fig.1
shows the level pattern which targets level 2 in the B+Tree.
As we walk the index to 14 , we only insert the level-2 node,
[11-21] , into IX-cache and bypass other green nodes . This

frees up space to cache red entries along other branches (e.g.,
right branch of 31) to improve reach. We identify three gener-
alized reuse patterns exhibited and exploitable across multiple
DSAs, applications, and index types.

We incorporate METAL into four DSAs: Gorgon [56], Cap-
stan [49], Aurochs [57], and Widx [31] and target multiple
algorithms. In § 2.1 we provide an overview of the DSAs
we target and in § 3 we provide a detailed description. We
evaluate index reuse in multiple applications: data analytics,

database scans, graph processing, spatial analysis, and sparse
matrix algebra. Our contributions:
• We propose METAL an architectural template for enabling

DSAs to work with multi-level indexed data-structures such
as trees, hash tables, and fibers.

• We create a novel cache architecture, IX-cache, that uses
index ranges as cache tags. Reorganizing the cache helps
short-circuit index walks and improves caching efficiency.

• We identify three reuse patterns and descriptors which en-
able METAL to manage the tradeoff between IX-cache’s
reach and effectiveness. Patterns express caching policies
on index or key space, which is affine, instead of non-affine
addresses.

• METAL performs 4.1× better than address-cache, and 2.4×
better than X-cache [50] (state-of-the-art DSA cache). We
save 1.7× bandwidth vs. address and 1.6× vs. X-cache.

2 Motivation and Scope
In this section, we first preview the types of architectures we
target. We then summarize the common traits of index data-
structures that need to be considered during caching. Finally,
we discuss why existing cache organizations do not suffice.

2.1 Indexed Data-Structures in Target DSAs
Here we provide an overview of our target DSAs (Fig. 2) and
focus on interaction with data structures. The DSAs we study
are organized similarly: the computation is laid out in a grid
of compute tiles [14, 15, 31, 37, 49, 56, 57, 57, 60] (Figure
2). They vary in the parallelism within each tile: some exploit
task parallelism [57], others exploit vector parallelism [56],
and loop parallelism [14]. Each system targets a different
memory pattern, and type of index. Gorgon [56] supports
declarative patterns (e.g., map, filter) on relational data that
scan through ranges of records. The index is a table of records,
and the primary reuse is the mid-level roots. Widx [31] sup-
ports lookups and joins on relational data that perform nearest
neighbor scans. Widx predates DSAs and continues to rely
on address-caches. Capstan [49] targets sparse tensor alge-
bra with matrices represented as fibres. Fibres are indexes
in which coordinates of the non-zeroes constitute the keys.
METAL enables Capstan to work with dynamic tensors [10]

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Addr.
Cache

Widx[31] Gorgon[56] Aurochs[57]

Parallel
Pattern

Stream

Capstan[49]

Domain Cache

Dataflow

Vector

Loop

 Spatial Compute Tiles

Sorted Sets

Dynamic Sparse Tensor Btree

Walkers

Val

Coordinates Roots

DRAM

Skip

Multi-level Compressed
Node

Deep
Layout Leaf Root

Shorting

Figure 2. Indexes used in domain-specific architectures. Blue
arrows indicate walk pattern.

and supports leaf-level scans. Aurochs [57] scans through the
records in an unordered manner; METAL speeds up these
unordered scans. We elaborate in more detail in § 4.

In the DSAs we study, 30-90% of end-to-end time is from
walks. The DSAs walk index data-structures to access data
objects [50, 57]. In sparse algebra, key-value stores, and data-
base joins where we scan through the index, walks are 70-80%
of total time. For data analytics with heavy computational
work, index walks are 30-40% of total time. In workloads
that employ nested data-dependent index types (e.g., RTree,
Database clauses) the walks are 50% of total time.

2.2 Common Traits of Widely-used Index Types
In our paper, we study multiple index types currently in use
across different fields: B+trees (from databases [56]), sorted
sets (from Redis [45]), R-Trees (from spatial [49]), and dy-
namic sparse tensors (from sparse-matrix algebra [10]). At
first glance, these data-structures seem uniquely tailored for
their specific applications. However, we show that they share
several common traits from a hardware standpoint. i) Hierar-
chical structure with internal roots: Whether viewed hori-
zontally (hash indexes1) or vertically (tree-like indexes), the
data-structures are organized hierarchically into layers with

1Our target is hash tables with chaining that exhibit hierarchical accesses;
not open chaining.

internal-roots. These roots enable the skipping of large parts
of the data structure. Thus, it is crucial that hardware caches
can quickly identify these roots. ii) Single key lookup and
Short-Circuit potential: Indexes, while organized across
multiple levels, use the same key for checks at each internal
root i.e., the lookup at every root can be redundant. This pro-
vides the opportunity to ’short-circuit’ a traversal by caching
any internal root. In contrast, data-structures such as tries and
prefix-trees uses a portion of the key at each internal root,
and we need to cache all roots along a path. iii) Compressed
internal roots: Each internal root only allocates metadata
for keys actually in use, and maintains them compactly as
ranges. The metadata could be coordinates in sparse tensors
or ranges in a B+Tree. Overall, this allows us to cache the
actual node itself, as opposed to just a pointer to the node
like in bitmap tries [5, 59]. v) Deep layouts: We find that
indexes are typically deep, and include multiple levels of
pointer indirection. In our research, we have studied B+trees
up to 18 levels deep. Such depth is beneficial for sparse key
spaces, as it creates balanced searches, compacts internal
roots, and improves storage efficiency. However, this also
means the cache has to focus on the inherent tradeoff between
caching common roots (and maximizing reach) versus tar-
geting specific branches (and maximizing short-circuiting).
v) Range scans and ordered traversals: We find that both
range scans[30, 38] (i.e., maps and iterators) and point queries
(i.e., lookups) are common depending on domain. Prior work
in hardware focused predominantly on point queries [50].
Many index structures maintain some form of order - either
keys (like in B-trees) or spatial (like in R-trees). We can use
this ordering to understand the access pattern and cache the
roots.

2.3 METAL vs. other caches
Observation 1: In address caches, walks repeatedly traverse
index and thrash the cache due to inflated working set.
Observation 2: DSA caches [50] cache leaves and short-
circuit on hits, but have high miss rate since leaves have
minimal reuse in deep index data-structures.
Observation 3: METAL caches intermediate nodes with high
reuse (maximizing reach), and short-circuits walks.

Fig. 3 highlights the benefits of METAL’s cache organiza-
tion over address-cache and X-cache [50] (the state-of-the-
art DSA cache). Walking (or Working) region shades the
nodes touched during an index walk i.e., the working set.
Caching Region shades index nodes kept in the cache during
a walk (helps reuse). The hit and miss paths vary between
cache designs. In an address-cache, hit or miss, each walk
traverses all levels from root-to-leaf. Different searches touch
different branches, and the walking region encompasses the
entire index. A hit eliminates only a single DRAM access.
X-cache [50] tags the data with the actual key, and a hit short-
circuits the entire walk. However, on a miss, X-Cache triggers

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

Cache
Region

 Address Cache

...* *

**

* *

*

*

...* *

**

* *

*

*

 X-Cache METAL

Walk
Region

...

Hit

* *

**

* *

*

*

HitHit /
Miss

Figure 3. Work (or Walk) Region Vs Cache Region in Address Cache, X-Cache and METAL.

Table 1. METAL vs. state-of-the-art storage idioms (shaded cells indicate limitations)
Scratch+DMA Access-Exe. Address-Cache DSA Cache METAL

Ta
rg

et

Plasticine [42],Buffets [40] Aurochs [57],SJoin [14] MAD [25], Widx [31] X-Cache [50]
Algorithm Perfect Loops Streaming Any Any Cache-conscious
LD/ST order Limited (on-chip only) Only FIFO Arbitrary Flexible
Data structure Tensors and Affine Streams Any Key-Value Index Data-Structures

D
es

ig
n

Short-circuit No. Walking always required. Fixed (Leaf) Flexible (Any)
Bandwidth Low High (threads) High(working set) High (misses) . Low (flexible)
Temporal reuse Yes (credit-driven) No reuse Yes (LRU) Leaf Indexes
Spatial reuse Yes (tiles) No reuse Yes (Blocks) Leaf Indexes
Reuse Orch. Explicit N/A Implicit Implicit Patterns
Utilization High (credit) Low (overflows) Low (misses) Flexible.

a root-to-leaf walk. It targets the wrong reuse as the leaf lev-
els are least reused, tend to be large, and overflow the cache.
METAL can choose the index nodes and levels to cache to
manage the working set, and control the tradeoff between
reach and effectiveness. i) METAL can cache upper nodes that
can cooperatively short-circuit across multiple branches to
increase the effective hit rate. X-cache cannot target reach at
all, and thus has high miss rate. ii) METAL can also cache
lower nodes close to leaves and reduce walk latency. For the
interested reader we perform a detailed exposition on each
of the effects discussed here in §5.1. Table 1 qualitatively
compares METAL with the state of the art. METAL helps
DSAs work with index data-structures that exhibit dynamic
and non-affine access patterns.

3 METAL Architecture
Fig. 4 shows METAL incorporated into a spatial dataflow ar-
chitecture [42]. Spatial architectures map the computation to
a grid of the compute tiles. Each tile implements a dataflow
thread [57]; a vessel that encapsulates the user-specified func-
tion along with register state sufficient to run the thread. Our
LLVM compiler places the operations on the grid of func-
tional units [47, 58] using high-level-synthesis. Physically,
the compute tiles are connected to a 2.5D high-bandwidth-
memory (HBM) via an interposer (similar to current GPUs).
A DMA engine interface shuttles data between the DRAM
and on-chip storage.

Logically, the compute tiles interface with the data-structure
using keys (not addresses). Each data object in the index has
a unique key which provides a namespace, that loads and
stores can use. The objects in DRAM are fetched by walk-
ers, state-machines that traverse the data-structure and chase

pointers [50, 57]. Hardware handles the address calculations
and cache operations to get the data. The data object itself is
allocated in a separate region in the DRAM and are accessed
through a DMA interface or stream (depends on the particular
DSA design). The index only contains the pointers to the data
object, and our cache only targets the index traversal itself.
Each tile includes a local scratchpad for staging the leaf data
objects and capturing immediate reuse of fields within the
object; it also acts as a defacto write buffer.

There is also a global scratchpad for preloading and double
buffering from the DRAM. METAL adds two components: i)
an IX-cache shared by multiple compute tiles to maximize
cooperative caching, ii) a pattern controller that directs cache
block traffic between the compute tiles, walker and IX-cache.

W
alk P

ip
elin

e

* *
* *

Index-Cache

Pattern
Control

 Action 1
Action 2

RTN*

 Walk
µcode

...

+ X

>> =

K
ey

s

C
o

m
p

u
te T

ile

Insert or
Bypass?

Le
ve

l
R

an
ge

K
ey

Index

* *

**

* * *

*

D
R

A
M

DATA

DATA

D
A

TA

*

DMA

Index

Figure 4. Overview of METAL Microarchitecture

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

The controller is simply a state machine (it does not require
complex logic or SRAM).

3.1 Index Cache (IX-cache)
Cache Block. The IX-cache’s block includes child keys

and pointers from an index node. The block is tagged with the
[Lo,Hi] tuple, which represent the smallest and largest keys
(the range) stored in the block. Fig. 5 a) shows the possible
layouts: i) Case 1: When block size == node size,
the cache tag [Lo,Hi] stores the exact range. e.g., we tag
the red block with [Lo=7,Hi=28] , the node’s end keys. ii)
Case 2: When node size > block size, the cache
block holds a sub-range. Here the node [7-28] is split into
three entries, [7-9] , [9-15] , and [15-28] . Each entry holds
one of the child pointers. c) Case 3: When node size <
block size, the cache coalesces multiple nodes in the
same level and stores a super-range e.g., here the cache block
fuses the two nodes [7-8] , and [9-12] .

Case 2:
Large Index

(node size > block size)

Case 3:
Small Index

(node size < block size)

Case 1:
Baseline

(block size = node size)

28

7 8 10 11 12

* *

**

* *

*

6 31

7 9 15

9 * *

 9 *
7 * 28* ...

...
...

7

9

28
Lo Hi

12 * 12

7

9

15

9

28

Lo Hi

15
7

*
15

9

9

15

28

*

*

IX-Cache Contents

7 * 12* ...
...

7 12
Lo Hi

Figure 5. Packing index nodes into cache blocks

Hit Path. The IX-cache is designed to short-circuit walks.
Specifically, when the IX-cache identifies a hit, it provides a
pointer that facilitates the walk’s continuation much closer
to the desired leaf, and in some scenarios, directly pointing
to the leaf. Every block in IX-cache tagged with the [Lo,Hi]
tuple which represents key ranges encompassed by the block.
Fig. 6 illustrates the stages in the pipeline (only the first
is required, and remaining are optional): i) Matching stage:
We use the range tags to match with the incoming key and
check entries for Lo ≤ key ≤ Hi. An exact match bypasses
the remaining step e.g., in Fig. 6 key 7 will match [7-15]).
Like address, the tags are maintained in SRAM. They are
read-out to registers with comparators attached. ii) Prioritize
ties: In instances where multiple matches arise, a ’level field’
helps break the tie by deciding the match to prioritize. For
illustration, a key marked 10 might match both the red and
green ranges in the cache. However, priority would be given
to [9-11] . A bitmap aids in maintaining relative priority. iii)
Finally, we read the cached index node from the data array
and extract the next child pointer. Each cache block (which

represents an index node) includes a set of sorted keys along
with child pointers. We find the child to be followed based on
where the key falls in the set of keys e.g., here 10 will match
9-10 in the block [9*10*11]. We achieve this with: parallel
≤ across all the index keys, then find first bit from the right
(first >). In cases where the node does not fit in the block, we
split the node ranges across multiple blocks.

·------------------------

:Index node:

uint32 c_keys[n]

node* c_ptrs[n]

void* data

bool leaf

• • • •

9
>

Hitmap

I

I

I

I

I

I

,,

• • • •

• • • •

- ,-..------1>\

�-------------------------J

• • • •

Figure 6. Hit Path: IX-cache Logic

Comparator Logic.
Ref. nm Vdd Trans Bit. mW ns

[11, 55] 180 1.8 800 64 0.7 0.5
[41] 90 1.0 1051 64 1 0.23

[7] 90 1.2 — 64 0.9 0.85
[19] 90 1.0 1359 64 0.8 0.22

This Paper 45 0.85 1400 2×32 0.02 1

Figure 7. Right: Synthesis of tag match logic in Nangate
45nm. depth = 10, entries = 256. Left: Floorplan

We implement a segmented tag match in Chisel (other tag
implementations are possible [55]) and compare our com-
plexity against prior literature (Fig. 7). As an upper-bound
estimate, we synthesize using nangate 45nm PDK and Open-
ROAD [3].

Set-Associativity. IX-cache can be made set-associative
similar to an address-cache. Like an address, index key val-
ues are divided into blocks (of size 2b) and sets. Block bits
(b) come from the LSB of the key. The keys are logically
divided into 16 (b = 4) wide blocks e.g., keys 0-to-15 will
be a block (Fig 8). Every index node will be mapped to the
same set as the keys it contains. Thus, index node [11-15]

and [12-13] will map to set 0 (they are ∈ 0−15). There are
a few differences: i) the key space is virtual i.e., no physical
backing memory. Thus, block size impacts the position of
the set bits, but not spatial locality. ii) Each index node only
includes a sub-range of the key block e.g., here [11-15] does

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

Key I ---- I Set (s) I Block (b) I

Index Nodes

DJ�:□�]�Q]
--._....i...._ -�--

11 * 15 19 28

c- --·
I
I
I

- dJ-- --· 31
•••

•••

I I

Figure 8. Set-associative IX-Cache

not include [0-10]. This is why we use range tags. iii) We are
caching an index of the key space, not the key space itself.
Larger block sizes can exacerbate set conflicts as more nodes
may map to the same set e.g., In Fig. 8, if the block size was
32 (5 bits), nodes [11-15], [12-13], and [19-28] would all map
to set 0, leading to conflicts that limit capacity.

3.2 Walk Pipeline
Miss Path: A miss triggers a root-to-leaf walk. METAL re-

purposes the prior microcode engines that the DSAs already
include [50, 57]. We only provide an overview due to lack
of space. Fig. 9 shows the index node, pseudo code, FSM,
and microcode table. The walk itself is highly serial and
data-dependent since key values determine the next child
pointer. However, each walker refills the data independently.
The goal is to harvest memory-level parallelism from these
independent walks. For this, we break the walker into a set of
states. At each long-latency state we yield to other requests. In
the hardware pipeline we multiplex multiple walks on a single
thread. There are two yield points in this index example: i)
Wait: accessing the current cursor, refilled from DRAM. ii)
Search: searching the node’s internal keys to find the next
pointer. The steps are compiled to a table and microcode.

As the walker traverses the index, the pattern controller
directs the insertion policy for the IX-cache. The controller’s
policy is explicitly set based on latent behavior and reuse
patterns exhibited by the applications (described in the next
section). For any node during a walk, the descriptor deter-
mines whether a specific node should be inserted into the
IX-cache or bypassed entirely. The decision is based on index
node information such as the level and range provided by the
walker and matches the directive of the pattern.

Default Agen SearchDram

CUR

WaitMiss

Hit

 (Start,Miss) => {allocD, allocK} => Agen
(Agen, Ptr) => {allocR, add, enq} => Wait
(Wait, DRAM) => {peek, load, enq} => Match

(Search,Child) => {lt(keys), msb?,Leaf => (End)

(State,Event) -> Sequence {Actions}

Ptr

 P
ro

g
ra

m
m

er

B+ Tree Walker Walk FSM

Walker Coroutine

cursor= IxCache(key).or(Root)

while(cursor.leaf != true):

 for i in 0..N: // parallelize
 if key < cursor.c_keys[i]:
 cursor=cursor.c_ptr[i];
 break;

End
Leaf

Child

Struct node:
uint32 c_keys[n]

 node* c_ptrs[n]
 void* data;

Figure 9. Cache miss handler.

4 Reuse Patterns and Descriptors
In this section, we motivate the need for a pattern-based ap-
proach in reasoning about locality in index data-structures.
Traditionally, we determine locality (both temporal and spa-
tial) based on the stream of addresses, since they reflect the
DRAM layout. However, in DSAs, the keys used to access
the data do not reflect the data-structure layout. index data-
structures are self-balancing and organize keys for lookups
rather than an application’s scan behavior pattern. We will
now describe the foundational concepts: i) Reuse patterns
(blue arrows in figures below): Our insight is that if we
observed the collective behavior of walks, we can identify
cooperative reuse of index nodes across them. More precisely,
we define a reuse pattern as the minimal set of nodes touched
by an “ideal” walker to capture a group of application keys,
achieving maximal short-circuiting and maximal reach. ii)
Cache descriptors (green bars): Cache descriptors are a
pragma or hint that METAL uses to express reuse patterns to
the IX-cache. The cache descriptors explicitly indicate what
type of index nodes should be cached. More importantly, it
refrains from specifying the exact node which permits the
cache to adjust to the exact pointers chased by the walks.
Compared to the “ideal” walker of a reuse pattern, practical
METAL is constrained by IX-cache’s size and geometry. De-
scriptors help manage the tradeoff between competing goals
of short-circuiting (effectiveness) and reach. Our investigation
of DSAs leads us to identify three reuse patterns that general-
ize applications, and we exploit them using descriptors.

4.1 Reuse Pattern: Node. Target: SpMM [49]

Compute
for rows in A:

val = sparse-dot(row, col)
for cols in B:

Walk
key = col
cur = i x_l ookup(key)
whi l e cur not l eaf :
 i dx = cur . r ange(key)
 cur = chi l d[i dx]

cur == leaf & leaf.key == col
 => INSERT

Descriptor : Node

Index: Sparse Tensor

ROWS

NZ

Leaf

COLS

Ix-C
ach

e

Figure 10. Illustration of Node Reuse. Target: Sparse Matrix
Multiplication. A×B; only B shown for clarity.

Fig. 10 illustrates the reuse pattern in SpMM. The data is
laid out in state-of-the-art dynamic sparse tensors [10, 39]
(in § 5.2 we also evaluate fibers [35]). We only show matrix
B for clarity. The non-zero (NZ) column ids are indexed in
a B+Tree; the leaves hold the NZs and their rows ids. The
computation is an inner product that uses a series of sparse dot
products. The reuse pattern is along the leaves of the matrix
as the inner loop tries to retrieve NZs of matrix B whose

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

coordinates match. The blue lines show the reuse pattern
along the leaves as we retrieve NZs from each col of B (which
maps to a leaf).

To capture this behavior we introduce the node descrip-
tor. The descriptor indicates to the underlying IX-cache that
it should target nodes at the leaves only, bypassing other
nodes entirely. Now walks will effectively be completely
short-circuited when the walk hits in the IX-cache. We re-
move all indirect accesses in the common case. For this pat-
tern we also lock down the entry in the cache for a specific
duration e.g., here we set life based on the number of accesses
to block. In SpMM, life is set to the number of non-zeros in
each column. The descriptor can target any node in the index;
but here SpMM demanded leaves.

4.2 Reuse Pattern: Level. Target: Database Scan [56]
Range scans are queries of the following type: SELECT *
FROM table WHERE X BETWEEN R1 AND R2 that retrieve
all records in [R1,R2]. Fig. 11 illustrates the computation and
walk pattern. As the walkers repetitively traverse the index
from root-to-leaf, they start exhibiting level-wise reuse. The
walks funnel through common nodes at intermediate levels,
but then diverge as they approach their destination leaves. We
use a level descriptor to capture this reuse pattern. It has two
goals i) cache nodes that are common across walks to max-
imize reach, ii) bypass nodes uncommon across walks and
save cache space. In the figure we are set to gather nodes be-
tween orange and red; and walks can now exploit the common
nodes that are in IX-cache to short-circuit. Levels from root-
to-orange are not cached since they are redundant, and levels
below red are bypassed since they are uncommon. Level de-
scriptor adjusts the start and end levels based on the utility.
If the utility is low, the band is adjusted to maximize reach
[start-δ , end]. If the level utility is high, the band is expanded
[start, end+δ] to improve short-circuiting effectiveness. The
descriptor tracks the utility of each level as #Total−Access

#Nodes−touched .

4.3 Reuse Pattern: Level, Branch. Target: Spatial
Analysis [26]

RTree is a spatial data structure used primarily for indexing
multi-dimensional information. Each object in the RTree cor-
responds to a bounding box that contains all the geometric

start<=lvl<=end => INSERT
Otherwise => BYPASS

Descriptor : Level

Compute

SELECT * FROM table WHERE
Key between R1 and R2.

Walk
key = r i d
cur = i x_l ookup(key)
whi l e cur not l eaf :
 i dx = cur . r ange(key)
 cur = next (i dx)

Ix-C
ach

e

DATA

Walk(R1)...Walk(R2)

Index

Index: B+Tree

start

end

Figure 11. Illustration of Level Reuse. Target: Range Scans

Ix-C
ach

e

Index: Rtree

 node[pvt - left] => INSERT

node[pvt + right] => INSERT

Descriptor : Branch

 y = f(x)
result = Lookup(y)

Compute

Walk
key = y
cur = i x_l ookup(y)
whi l e cur not l eaf :
 i dx = cur . r ange(key)
 cur = next (i dx)

DATA

Index
start

end

DATA

Pivot

Left Right

Depth

start<=lvl<=end => INSERT
Otherwise => BYPASS

Descriptor : Level

x-Tree y-Tree(x1,y1)

(x2,y2)

(x2,y1)

(x1,y2)

(x3,y3)

(x3,y4)

(x4,y3)

Figure 12. Illustration of Branch Descriptor. Target: Spatial
Analysis. Tree-y shown for demonstration.

objects represented by vertices. In fig. 12, we demonstrate the
application space using quadrilateral embedding. We imple-
ment a two-dimensional RTree which contains quadrilaterals
bound by x and y coordinates; each of the coordinates are
indexed in a BTree with the leaf values in the x-tree serving
as keys to the y-tree, as it has information of the neighbouring
y-coordinates that form a quadrilateral. The algorithm tries to
find quadrilaterals within a certain bound.

We first generate random x co-ordinates and traverse the
x-tree. Once we reach the leaf, we get the y-tree keys that
correlate to these x keys to form quadrilaterals. The scan of
the y tree is narrowed to specific x coordinates found, we find
a pattern of certain key clusters being repetitively scanned
i.e., the reuse tends to be along certain tree sub-branches. We
use the branch cache descriptor to capture this reuse pattern.
The branch descriptor adjusts both depth and breadth based
on the size of the cluster of keys. We use the median of
the key cluster to serve as a pivot (Fig. 12), and proceed
to cache sub-branches to the left and right up to a certain
depth. The descriptor improves the hit rate for keys that can
potentially form quadrilaterals. Branch descriptor adjusts the
pivot, left, right and depth as the key cluster changes; for this
we maintain a moving average for a window of keys. If the
utility is low and the cache is not full, the features are adjusted
to maximize sub-tree reuse. If the hit rate in the sub-region
is maintained and there is space in the IX-cache, we increase
the depth, to improve short-circuiting.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

Compute
score=Hash("abbreviation")
bidx=bucket(score)
Walk
cur = i x_l ookup(Scor e)
whi l e cur :
i f scor e == cur . scor e

cur = cur . next

cur.score == median and skip
 => INSERT

Descriptor : Node

append(cur . val ue)

Ix-Cache

B
U
C
K
E
T
S

"bat", s1"abbr", s1
[S1 - Mx]
[S1 - S3]

"cat", s2 "test", S3
[S3 - Mx] ...

...

i f cur . scor e > scor e
 br eak

[S3 - Mx]

[S1 - Mx] *

*

Figure 13. Illustration of sorted sets. Target: Node reuse

4.4 Reuse Pattern: Node. Target: Sorted Sets [45, 46]
We implement sorted sets (from Redis[45, 46, 62]), a type of
hash index commonly used in tagging [52], categorization,
and auto-completion [2]. This is a hybrid data structure com-
bining characteristics of sets and hashes. Each record in the
sorted set is a tuple: a string and a number referred to as the
score. Nodes are mapped to buckets in a hash-table based on
their score. Each bucket is implemented as an ordered skip
list. The records within the list are first ordered based on their
score and then based on lexicographic order (for records with
the same score). The skip list of each bucket provide layers
so that you can “skip” over large part of the bucket by simply
traversing skip nodes at higher layers. Explicitly, each skip
node represents a range, [Si–Max], where Si is the score of
underlying node at the skip point, and Max is the score of the
terminating node in that bucket. The IX-cache caches the skip
nodes to help shortcircuit the traversal for any key in the range
Si to Max. Note that a hit in the IX-cache does not completely
eliminate the traversal (as there could be multiple strings with
same score) and we have to validate by traversing that portion
of the list. Finally, when there are multiple skip nodes from
which we can reach a target node, we have to choose which
one to cache. Here, we cache the skip node located closest
to the median point of the keys as it maximizes reach and
short-circuits multiple traversals.

There are two possible deployments of sorted sets based on
how the score of each record is set, explicit or implicit: i) An
explicit score is assigned by the user if they wish to maintain
an ordered collection of items. Examples include retrieving
posts in a social network feed based on their popularity, or
managing tasks in a priority queue. ii) Alternatively, an im-
plicit score can be calculated as a hash of the string in the
record. This enables METAL to gracefully support arbitrarily
wide string-based keys despite the hardware restricting key
bit-widths (e.g., 4–8 bytes). In this case, the scores do not
reflect actual ordering, but for organizing records in the skip
list and supporting fast lookups. Any hash function can be
used to support lookups, but with order-preserving [18] and
consistent [21, 44] hashing we can support range scans of
strings as well.

Arm v9
gem5 O3

Compute
Tile (C++)

Walker
(C++)

Pattern
(C++)

Host

gem5 cache
scratch simobj

LLVM to
elf file

IR

Ex-in-Ex

Engine

Spatial

Arch

Model

Arch.

Const.

Layout

ex
p.

ports LLVM IR
Synthesis

m
em

.
m

ap

Feature Config
DSA Grid 16 (8×2) —128 (8×16) tiles @1Ghz. Statically con-

figured mesh. 32b/cycle pipelined.
Scratchpad 8K/tile (SpMM) to 64K/tile (JOIN)
Compute 32bit. +,× (256), <<,|,& (256).
Walkers 32 walkers; 4 outstanding (128 total)

Cache Set-Assoc (16-way): 1 cycle. 7000fJ. X-cache. 1024
entries. 64k. 2 cycles.

IX-cache Set-Assoc (16-way). 1024 entries. 64k. 5 cycles.
9000fJ/64k.

Memory HBM 1000, 8 Ch, Bank width: 1024bit. BW:128GB/s

Energy Reg:50fJ +:210fJ ×:1260fJ Bit:180fJ <<:410fJ
Host ARMv9, 2Ghz, OOO. 8 way. L1D 64kB; L2 2MB

Figure 14. Overview of Simulation Setup

5 Evaluation
Our toolflow is depicted in Figure 14 using Gem5-Salam [47].
The computation is mapped onto the grid of functional units
by our compiler using LLVM [47, 58]. We write a functional
model of the target DSA in C/C++ and host code to drive
it. The control and dataflow graphs are extracted by lower-
ing the DSA definition to LLVM IR. This is mapped to a
runtime model with constrained tile resources. The runtime
is a faithful “execute-in-execute” simulator with timing. We
implement IX-cache as a memory object in Gem5. We use
non-coherent crossbars in Gem5 to connect the DSA’s compo-
nents to the scratchpad and IX-cache. The DMA engines di-
rectly interface with the memory controller. We implemented
X-cache [50] as a gem5 cache object. We implement a hard-
wired controller for miss handlers, and synthesize it from
the same walk logic as IX-cache. We assume ideal cost for
X-cache’s handlers i.e., no resource limit and only limited by
DRAM access latency. Following a miss, X-cache inserts the
leaf into the cache. On a hit, we assume that data is returned
on fast path (no additional handler [50]). Fig. 14 lists the
simulation parameters. All cache blocks are set to 64 bytes to
ensure a fair comparison. We study eight applications across
four domain-specific architectures and support five different
indexes: B+Trees, Compressed Fibres, Relational tables, R-
Trees, and Graphs. Table 2 lists patterns for each DSA and
application and the number of ops .

We evaluate two variants, METAL-IX and METAL. i) METAL-
IX does not use patterns at all; our goal is to showcase IX-
cache stand-alone efficacy without patterns. METAL-IX em-
ploys a hardwired eviction policy based on utility. We track
utility by using 4-bit saturating counters (one per entry) to
track accesses. Other implementations are possible, but index

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. Workload Setup
Scan[56] Sets[31] SpMM[49] Analytics[56] RTree[57] PageRank[57]

Workload Random Search Inner Product SEL,WHE.,JOIN Quad. Embedding PageRank-push
DSA Gorgon Gorgon Capstan Gorgon Aurochs Aurochs
Index B+Tree Hash-table Dyn.Tens. [10, 39] B+Tree RTree Adj. List
Size 10M keys 8M keys HB/bcs.[1612] 10M records 2 BTrees [10M,300K] 10M nodes
Degree 5 (9 keys) 10 Dynamic (row/col) 5 (9 keys) BTree-x:5, BTree-y:3 Dynamic (deg.)
Depth 10 levels - - 10 levels BTree-x:10,BTree-y:6 -
Ops/Walk 56 Ops 128 Ops 116 Ops/row 74 Ops 130 Ops 142 Ops
Ops/Compute 6 Ops 48 Ops 111 Ops/row 232 Ops 206 Ops 141 Ops
Index Type [Lo, Hi] Id, Key Row, Col (Int) [Lo,Hi] (Int) [Lo,Hi] (Int) [key, degree](Int)

Pattern Level Node Node Level Level+Branch Node+Branch

probes are infrequent (every few hundred cycles) so coun-
ters are sufficient. ii) METAL employs cache descriptors
and dynamically decides which nodes to insert or bypass the
IX-cache. The pattern remains constant throughout the run,
but parameters are updated after a batch of 1 million walks.
Table 2 lists the descriptor for each of the workloads.
5.1 Trends: METAL vs. Address vs. X-Cache
Here we present an initial investigation on why METAL’s
cache organization is fundamentally more effective (indepen-
dent of geometry and policy). We compare METAL with a
fully-associative address cache with OPT policy (FA-OPT)
and state-of-the-art X-Cache [50] which caches leaves. Each
cache is configured as 64kB, 1024 entries. We also com-
pare against a 16× larger 1MB address cache. We use three
metrics: i) Miss rate: The ratio of misses to the number of
accesses (Fig. 15). ii) Working set size: The fraction of the
index touched in the DRAM (Fig. 16), and iii) Walk latency:
The average walk latency in cycles. (Fig. 17)y1 Observation 1: Address-caches are limited by work-
ing set; policy has less impact. FA-OPT has lower miss rate
than LRU, but working set still remains high due to repeated
root-to-leaf traversals touching ≃ 85% of index. FA-OPT is
also 1.8× slower than METAL.y2 Observation 2: Miss rates can be misleading when
comparing cache organizations, since hit and miss path
vary. X-cache may have high miss rate due to leaves, but may
still reduce the working set, since hits completely short-circuit
and eliminate multiple DRAM accesses. FA-OPT has lower
miss rate but has high working set due to repetitive traversals.y3 Observation 3: X-cache has high miss rate since leaf
working set is high in index data-structures. X-cache can
only cache leaves thus the likelihood of thrashing grows with
the number of entries in the index. Furthermore, on misses,
X-cache requires complete root-to-leaf walks, which further
exacerbates the problem. X-cache miss rate is between 0.6—
0.95.y4 Observation 4: METAL short-circuits more walks,
thus reducing the working set size vs. X-cache. METAL
caches frequently used intermediate nodes, bypassing low
reuse leaf nodes, and ignoring redundant upper nodes. X-
Cache only caches the leaf, even though it short circuits effec-
tively, it does not reduce the working set size much because it

is oblivious to index access behaviour. The working set size
for METAL is ≃0.2 vs. ≃0.72 for X-cache.y5 Observation 5: METAL reduces walk latency by
1.5× vs. X-cache, 1.8× vs. FA-OPT. Unlike X-cache, METAL
does not always cache leaves, rather the workload reuse pat-
tern dictates cache insertion. METAL can cache intermediate
nodes to improve reach or cache lower nodes to reduce walk
latency. FA-OPT does not reduce walk latency, since working
set does not reduce and there is no short-circuiting.y6 Observation 6: METAL shrinks the cache size by
16×. We include a larger address cache (1MB) to try and
match 64k METAL’s performance. Even large address caches
suffer from inflated working sets that thrash the cache and
reduce its effectiveness. A 1MB FA (16× the size of METAL)
has 20% higher walk latency.

Scan JOIN RTree SpMM Sets0.0
0.2
0.4
0.6
0.8
1.0

M
iss

 ra
te

Gorgon Aurochs Capstan WidX

METAL X-Cache FA-OPT
2 3

1

Figure 15. Miss Ratio. 1 = All misses. All caches are 64K.

Scan JOIN RTree SpMM Sets0
20
40
60
80

100

W
or

ki
ng

 S
et

 (%
)

Gorgon Aurochs Capstan WidX

1

4

Figure 16. Working Set (lower is better). 100% = All nodes.

Scan JOIN RTree SpMM Sets0
100
200
300
400
500
600
700
800

W
al

k
(c

yc
le

s)

Gorgon Aurochs Capstan WidX

FA (1MB) METAL XCache FA-OPT

1
5

2
3

6

Figure 17. Walk Latency. (lower is better). METAL, X-Cache,
FA-OPT are 64K. FA (1MB) is 1MB.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

Table 3. Evaluation Summary

Question Answer
How much can METAL improve performance ? 7.8× vs streaming, 4.1× vs. Addr., 2.4× vs. X-cache. § 5.2.
How much DRAM energy can METAL save? 1.9× vs streaming. 1.7× vs. Addr., 1.6× vs. X-cache. §5.3.
How much perf. attributed due to IX-cache? 5.3× vs. streaming, 2.8× vs. Addr., 1.6× vs. X-cache. §5.2.
How much improvement due to patterns? 1.6×—3.7× over METAL-IX. §5.4.
Scalability with large index data-structures? 18 deep, needs 256k IX-cache. §5.5 Optimal size: 64k §5.6.
Cache energy 29.5% of total on-chip. upto 5× lower vs. Addr; 3× vs X-cache. § 5.7
Supplemental results (available on hotcrp) Best geometry: 16-way. 16 banked. Shared vs. Private: Shared is best since

access every 70-180 cycles. All experiments use optimal config.

5.2 Performance Evaluation
Result: Compared to address-cache, METAL short-circuits
and reduces working set. Compared to X-Cache, METAL uses
patterns to collectively optimize reach and short-circuiting.

Fig. 18 plots the speedup. In this section and future sec-
tions the baseline cache sizes are set to 64k,16-way,16 banks
(see §5.6 for design sweep). METAL-IX and METAL achieve
speedup by short-circuiting and maximizing reach. METAL
performs better than METAL-IX since we enable patterns
to capture the reuse of the algorithm, and cache nodes with
maximal benefit. y1 In workloads with significant working
set size - JOIN, METAL shows ≊4× improvement compared
to address cache. There are 2 reasons for this: i) IX-cache
alone improves by 2.6 × due to short-circuiting and saving
multiple DRAM accesses, whereas a hit in the address cache
only eliminates a single access. ii) METAL introduces patterns
to further improve 4 × (analysed in detail:§ 5.4). We only
improve by 4×, since it has high arithmetic intensity : 318
ops/walk. We improve performance over X-Cache [50] by 2.4
×, since we enable caching of intermediate nodes, adapting
to the search batch of keys. y2 We maximise performance in
workloads where reach is important (Scan, JOIN) compared
to X-Cache, since it only caches leaves. In RTree, working
sets overflow and gains are limited.
Shallow vs. Deep Indexes: SpMM and Sorted Sets (Sets)
can be configured to use shallow index data-structures (-S in
plot) or deep indexes. SpMM-S employs shallow fibers [35],
while SpMM employs deep sparse tensors [10]. Sets-S mim-
ics a low associativity hash-table with ≃ 103× than Sets

(deep version) uses longer lists in each bucket. y3 METAL
improves by 2.4× vs. X-cache for deep indexes. We cache
high reuse leaves and short-circuit the entire walk. X-cache
also short-circuits but prematurely evicts. METAL sets life-
time using descriptor to prevent premature evictions. In the
shallow versions (-S in plot) METAL’s behavior is similar to
X-cache; only 15% improvement. This is because there is less
opportunity for exploiting reach. METAL-IX does not include
patterns and pays the penalty for higher cache hit latency and
cache pollution.

5.3 DRAM Energy
Fig. 19 shows the normalized dynamic energy in DRAM.
Even in workloads where speedup is limited, METAL re-
duces DRAM Energy (e.g., ≃ 2× in Nest.SEL and WHERE).
METAL reduces the the total number of access by short-
circuiting walks. In memory-bound workloads (Scan, SpMM
in Fig. 19: y4), we see maximum reduction of DRAM en-
ergy. X-Cache’s hit path maximizes short-circuiting to the
leaves. Thus, X-Cache has minimal traffic benefit over the
address cache. METAL caches intermediate nodes, maximizes
reach and saves traffic. SpMM exhibits high short-term reuse.
METAL’s pattern is effective at capturing the leaf reuse and
ensuring that walks are completely short-circuited. In JOIN,
METAL experiences high contention as it targets multiple
B+Trees. METAL short-circuits less and hence achieves less
traffic reduction. For the shallow versions (-S) we save less
since leaf node reuse can be captured by all designs; we still
save 10–15% since patterns prevent premature evictions.

Scan 40% WHERE JOIN Nest.SEL RTree PageRank SpMM SpMM-S. Sets Sets-S G.MEAN0
2
4
6
8

10
12
14
16

No
rm

. S
pe

ed
up

Gorgon Aurochs Capstan Wid-X

METAL METAL-IX X-Cache Addr Stream

2

3
1

Streaming = 1

Figure 18. Speedup. METAL vs. X-Cache vs. Address vs. Stream. (higher is better). -S: Shallow Fibers.

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

SCAN 40% WHERE JOIN Nest.SEL RTree PageRank SpMM SpMM-S Sets Sets-S G.Mean0.0

0.2

0.4

0.6

0.8

1.0

DR
AM

 E
ne

rg
y

Gorgon Aurochs Capstan WidX

4

Figure 19. Normalized DRAM Energy (lower is better).

5.4 METAL Speedup Breakdown
Result: Patterns avoid misbehavior of hardwired policy of
IX-cache and improves performance further by 1.5—4×; dy-
namically tuning parameters further improves performance
by 10—30%.

METAL’s performance improvement is due to three factors:
IX-cache that short-circuits walks, patterns that capture the
reuse of the algorithm, and parameters that dynamically adjust
regions that are cached. We now breakdown the contribution
of each factor (Fig. 20). Overall, the IX-cache hardware alone
improves performance between 3–8× vs. streaming. Further
improvement is limited by the hardwired policies that are
reactive (e.g., LFU or LRU) to manage locality. Introduc-
ing patterns improves speedup further to 3.5–14x; 1.5–2×
improvement vs. IX-cache: i) Patterns prevent thrashing:
Hardwired IX-cache greedily caches all nodes touched during
a walk. Patterns explicitly set margins below which nodes
that are not frequently used will be bypassed and not cached.
ii) Patterns avoid redundant insertions: In workloads with
high data reuse, upper levels in the index are strictly redun-
dant. IX-cache does not realize this and wastes space on
redundant index nodes. Patterns explicitly target lower leaves
only thereby improving cache utilization e.g., in SpMM we
improve performance by 4 ×. iii) Patterns exploit coopera-
tive caching and maximize reach. Patterns specify a band
of index levels that contain common roots across walks. In

Scan JOIN RTree PageRank SpMM SpMM-S Sets0
2
4
6
8

10
12
14
16

Sp
ee

du
p

Br
ea

kd
ow

n

Gorgon Aurochs Capstan WidX

Ix-Cache Patterns Params

Figure 20. Breakdown of factors contributing to METAL’s
speedup. IX: IX-cache only (with hardwired policy). Patterns:
Reuse managed with static parameters. Params: Reuse man-
aged with dynamic parameter tuning.

applications with deep indexes (e.g., Trees in SpMM, Lists
in Pagerank) these cached common roots short-circuit many
walks. Dynamically tuning parameters further improve perfor-
mance 10—30% over patterns (overall 3.8—16× speedup vs.
streaming). Parameters dynamically redraw the index region
being cached by varying the start-to-end band of levels, and
left-to-right sub-branches, based on the keys touched. Overall
impact is high on workloads where keys are fetched vary
frequently (e.g., Scans, Join, R-tree).

How do patterns adaptively cache? To further dissect the
reasons for speedup, we investigate the contents of the IX-
cache (Fig. 21) (with and without patterns). We even fine-
tuned the standalone IX-cache based on a profile run. Through
this, we bypass the levels to prevent thrashing. Despite this,
patterns and parameter tuning achieve better cache behavior.
There are two ways in which patterns and parameters improve:
i) Adapting to target reach (e.g., Scan): IX-cache alone
spreads the cache capacity across multiple levels of the index.
Tuning the pattern parameters narrows the levels cached and
dynamically finds the best [start—end] level for maximizing
reach. ii) Adapting for leaf reuse (e.g., SpMM): IX-cache
tends to waste space on intermediate and upper nodes, that
are redundant when leaf nodes are cached. The reuse pattern
helps bypass the intermediate nodes and straightaway targets
the leaf. SpMM-S has index < 4 levels, therefore, the cache
occupancy shows only 1-3 cached. We provide a plot illustrat-
ing how the parameter tuning help METAL adapt over time

IX

M
TL IX

 M
TL I
X

M

TL
IX

 M
TL

 IX

 M

TL

IX

 M
TL

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e
Oc

cu
pa

nc
y

Scan JOIN RTree SpMM SpMM-S Sets
Gorgon Aurochs Capstan WidX

1-3 4 5 6 7-10

Figure 21. METAL-IX vs. METAL (MTL in X-axis). In Sorted
Sets, the skip list can be arbitrarily deep; so we split into 10
regions (1: head of skip list). SpMM-S: Fibers are 3 levels.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

(Fig. 22). We show a total of 10 million walks of execution
split into windows of 1 million. For the Scan we can see that
parameters are able to find the levels best suited for walks
within each window while the fixed pattern is unable to adapt.

Le
ve

ls

1
2
3
4
5
6
7
8
9

10
IX

M
E

TA
L

Waste

Short.

Time

Figure 22. Level pattern adaptivity with parameter tuning. Y-
axis: Levels cached as walks change. X-axis. 1 million walks.
IX-cache chooses hard wired policy. Benchmark: Scan

5.5 METAL vs. Index Size
Result: METAL can use patterns to scale up and support
larger datasets, without requiring a larger IX-cache. Increas-
ing records from 10M to 100M introduces only 15% penalty.
Result: A 40× increase in database size requires only 8×
increase in IX-cache size.

Two separate factors determine index size: i) Number of
records, ii) index depth. First, we vary the B+Tree from 10M
to 100M records and IX-cache size from 32kB - 256kB (512
- 4096 entries). We show METAL-IX and METAL scaling
with increasing index size. Fig. 23a shows the average walk
latency. y1 We find that METAL adapts to larger databases
without increasing cache size due to patterns which allow for
optimizing space in the IX-cache. Thus, for JOIN, METAL
caches common intermediate nodes, focuses the cache on
fewer levels, and maximizes the number of walks benefiting
from short-circuiting.

Secondly, we varied the index depth from 10-18 levels
for METAL-IX and METAL (Fig. 23b). This increases the
database size by 40x (10M to 400M records). We find that the
walk latency increases by 2 × for METAL and 3 × for METAL-
IX , due to traversing more nodes per walk. We also observe
that METAL-IX ’s performance degrades at a faster rate due
to inefficient reuse region capture. y2 Through METAL , we
reduce the IX-cache size by 8 × because 32KB IX-cache with
METAL scales better than 256kB IX-cache with METAL-IX .

5.6 Design Sweep
Result: A 64KB IX-cache can support up to 64 compute tiles
while consuming less than 50% HBM bandwidth.
Result: In SpMM a 16K cache is sufficient, since workload
has immediate reuse. In workloads with varied index reuse
METAL supports larger DSA e.g., JOIN. In RTree workloads
with large working set, DSA is bandwidth limited

10M 40M 80M 100M
Workload Size

400

500

600

700

800

900
W

al
k

La
te

nc
y

32KMTL
32kIX

64KMTL
64kIX

128KMTL
128kIX

256KMTL
256kIX

10M 40M 80M 100M
Workload Size

400
500
600
700
800
900

W
al

k
La

te
nc

y

1

(a) How does METAL scale with index size.

10 12 15 18
Index Depth

400
600
800

1000
1200
1400

W
al

k
La

te
nc

y 2

(b) How does METAL scale with index depth

Figure 23. Cache size vs. Index size. Legend: MTL: METAL.
IX: METAL-IX. workload used: JOIN

We study the scaling in performance on varying the tile
count from 16-128 and IX-cache size from 8kB-2MB. Our
goal is to find the Pareto-optimal design point for METAL
. We only show IX-cache size up to 256kB, since the DSA
is parallelism (par.) limited. Fig 24 plots for workloads with
different reuse patterns: JOIN, SpMM and RTree. We vary the
IX-cache size on the x-axis and plot the normalised Speedup
on the y-axis. The plot is normalised to 8-tile streaming DSA.
Within each plot, we classify the performance curves into 3
regions: i) Bandwidth Limited (Band. Lim.): In this region,
the DSA consumes ≥ 50% of HBM peak bandwidth, and has
high miss rate. ii) Cache Limited (Cache Lim.): In this region,
the IX-cache size and policy (or pattern) can influence miss
rate. iii) Parallelism Limited (Par. Lim.): In this region, the
performance is dependent on the number of compute tiles.

5.7 Energy
Result: METAL reduces cache energy by short-circuiting
walks, and reducing number of accesses. 3× lower energy.

Fig, 25:Top compares the energy of cache organizations.
Energy = per-access cost × #accesses. The baseline is a 16-
way address cache with the data array accessed only on a
match. METAL ’s tags are also stored in SRAM, the only
difference is the range match. We find that the total per-access
energy is more expensive for METAL - 9000fJ vs 7000fJ
(for X-cache and address-cache). Compared to the address
cache, METAL reduces total accesses by 2-4 ×. Compared to
X-Cache, METAL achieves higher hit rate by targeting high

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

8 16 32 64 128 256
Cache Size (in kB)

0
50

100
16 Tiles 32 Tiles 64 Tiles 128 Tiles

8 16 32 64 128 256
Cache Size (in kB)

0

20

40

60

80

100

No
rm

. S
pe

ed
 U

p

Band. Lim.

Cache Lim. Par. Lim.

JOIN

8 16 32 64 128 256
Cache Size (in kB)

0

20

40

60

80

100

Band
Lim.

Par. Limit.

SpMM

8 16 32 64 128 256
Cache Size (in kB)

0
25
50
75

100
125
150
175

Band. Lim.

Cache.
Lim.

RTree

Figure 24. Y-axis: Normalized Speedup. X-axis: Cache size. Legend: 16-128 compute tiles. Base: 8-tile streaming.

reuse index nodes, not just leaves. We observe that the IX-
cache is queried on an average every 108 cycles. This makes
the accesses to the IX-cache sparse and reduces total access
cost compared to address cache models where every memory
access needs to go through the cache hierarchy.

Fig. 25:Bottom, breaks down the energy of different mod-
ules: compute tile, IX-cache, walker logic + pattern controller.
We show representative workloads from each of the DSAs.
The IX-cache accounts for 1

3 of overall on-chip energy.

6 Supplemental Related Work
Section 2 gave a detailed comparison against start-of-the-
art. The long history of work on decoupled DMA for shut-
tling dense tensors includes scatter/gather engines [20, 23,
28, 51], memory controllers [8], and tiled DMAs [1, 12, 40].
They only target streaming. Stream-DSAs have targeted in-
dexed data-structures e.g., Aurochs [57] and Stream-join [14].
Stream-DSAs do not recognize reuse in index data-structures,

Scan JOIN RTree SpMM Sets0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. C
ac

he
 E

ne
rg

y

3.8x

3.1x

5.3x 2.6x
5x

Gorgon Aurochs Capstan WidX

METAL X-Cache Addr

0 20 40 60 80 100
% Energy Breakdown

Scan
JOIN

RTree
SpMM

Sets

Compute IX-cache Walker

Figure 25. Top: Cache Energy. (Red: Cache access reduction
relative to address-cache.) Bottom: Energy Breakdown.

so they suffer significant bandwidth penalty in workloads
with reuse. Aurochs [57] expresses walks as a sequence of
functional patterns. Stream-join [14] expresses walks using
indirectly-indexed patterns.

There has also been work on walkers in FPGAs [9, 12],
CPUs [31], and CGRAs [57]; Widx [31] stored data in an
address-based cache, Ax-DAE [9] stored the data in a scratch-
pad, DAS-X [33] used an object cache that captures leaf reuse,
similar to X-cache. We demonstrate that leaf data reuse may
be lower in index data-structures. There has also been exten-
sive work on hardware prefetching for linked lists [17, 29, 48]
which focused on the walk and traversal, not on index reuse.

There has been work that targeted explicit reuse in tiled
algorithms [1, 12]. Buffets [40] created a portable library
for managing scratchpads. There have been proposals for
remapping in address-caches (Stash [32], Jenga [53], and
Hotpads [54]). These target affine-loops and require the DSA
to define the loop order, and access stride.

Finally, IX-cache generalizes the classical concept of guarded
page tables and translation caches [5, 6, 34, 59]. This paper
targets DSAs, while CPU/GPU extensions are future work.

7 Conclusion
We have developed METAL, an architectural template to en-
able DSAs to manage and reuse index data-structures. There
are two complementary ideas in METAL: 1) IX-cache, a novel
cache architecture that uses key indexes as cache tags for
short circuiting index walks. ii) Reuse Patterns, an abstraction
to manage IX-cache locality at the granularity of the indexes.
METAL will help “generalize” DSAs and enable them to tar-
get a wider range of applications.
Acknowledgments
We would like to express our sincere appreciation to the
reviewers and our shepherd, Peter Desnoyers, for their invalu-
able feedback and guidance throughout the review process.
Their constructive input and insights played a pivotal role in
enhancing the quality and clarity of the paper.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Anagha M. Anil Kumar, Aditya Prasanna, Jonathan Balkind, and Arrvindh Shriraman

References
[1] Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael

Pellauer, and Joel Emer. 2011. Leap Scratchpads: Automatic Memory
and Cache Management for Reconfigurable Logic. In Proc. of the 19th
FPGA (FPGA ’11). New York, NY, USA.

[2] Md Nur Ahmed. 2024. https://dev.to/mdnurahmed/simple-scalable-
search-autocomplete-systems-1j18.

[3] Tutu Ajayi, Vidya A Chhabria, Mateus Fogaça, Soheil Hashemi, Abdel-
rahman Hosny, Andrew B Kahng, Minsoo Kim, Jeongsup Lee, Uday
Mallappa, Marina Neseem, et al. 2019. Toward an open-source digital
flow: First learnings from the openroad project. In Proc. of the 56th
Annual Design Automation Conference 2019. 1–4.

[4] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and
Jaehyuk Huh. 2021. InnerSP: A Memory Efficient Sparse Matrix Mul-
tiplication Accelerator with Locality-Aware Inner Product Processing.
In 30th Int’l. Conf. on Parallel Architectures and Compilation.

[5] Thomas W Barr, Alan L Cox, and Scott Rixner. 2010. Translation
Caching: Skip, Don’t Walk (the Page Table). In Proc. of the 37th ISCA.

[6] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating Two-Dimensional Page Walks for Virtual-
ized Systems. SIGOPS Oper. Syst. Rev. 42, 2 (mar 2008), 26–35.

[7] N. V. Vijaya Krishna Boppana and Saiyu Ren. 2016. A Low-Power and
Area-Efficient 64-Bit Digital Comparator. J. Circuits Syst. Comput. 25,
12 (2016).

[8] J. Carter, W. Hsieh, L. Stoller, M. Swanson, Lixin Zhang, E. Brunvand,
A. Davis, Chen-Chi Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. 1999. Impulse: building a smarter memory controller.
In Proceedings Fifth International Symposium on High-Performance
Computer Architecture.

[9] Tao Chen and G Edward Suh. 2016. Efficient data supply for hardware
accelerators with prefetching and access/execute decoupling.. In Proc.
of the 49th MICRO. 1–12.

[10] Stephen Chou and Saman Amarasinghe. 2022. Compilation of dynamic
sparse tensor algebra. Proc. of the ACM on Programming Languages
6, OOPSLA2, 1408–1437.

[11] Chang Chua and R.B.N. Kumar. 2017. An Improved Design and Sim-
ulation of Low-Power and Area Efficient Parallel Binary Comparator.
Microelectron. J. (aug 2017), 84–88.

[12] Eric S Chung, James C Hoe, and Ken Mai. 2011. CoRAM: an in-fabric
memory architecture for FPGA-based computing. In Proc. of the 19th
FPGA.

[13] Jason Clemons, Chih-Chi Cheng, Iuri Frosio, Daniel R Johnson, and
Stephen W Keckler. 2016. A Patch Memory System for Image Process-
ing and Computer Vision.. In Proc. of the 49th MICRO. 1–13.

[14] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019.
Towards general purpose acceleration by exploiting common data-
dependence forms. In Proc. of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 924–939.

[15] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. To-
wards General Purpose Acceleration by Exploiting Common Data-
Dependence Forms.. In Proc. of the 52nd MICRO. 924–939.

[16] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-
Specific Hardware Accelerators. Commun. ACM 63, 7 (June 2020),
48–57.

[17] E Ebrahimi, O Mutlu, and Y N Patt. 2009. Techniques for Bandwidth-
Efficient Prefetching of Linked Data Structures in Hybrid Prefetching
Systems. In Proc. of the 15th HPCA.

[18] Edward A Fox, Qi Fan Chen, Amjad M Daoud, and Lenwood S Heath.
1991. Order-preserving minimal perfect hash functions and informa-
tion retrieval. ACM Transactions on Information Systems (TOIS) 9, 3
(1991), 281–308.

[19] Fabio Frustaci, Stefania Perri, Marco Lanuzza, and Pasquale Corsonello.
2012. Energy-efficient single-clock-cycle binary comparator. Int. J.
Circuit Theory Appl. 40, 3 (2012), 237–246.

[20] Daichi Fujiki, Niladrish Chatterjee, Donghyuk Lee, and Mike O’Connor.
2019. In Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis. New York, NY, USA,
Article 55.

[21] A González-Beltrán, Peter Milligan, and Paul Sage. 2008. Range
queries over skip tree graphs. Computer Communications 31, 2 (2008),
358–374.

[22] Goetz Graefe et al. 2011. Modern B-tree techniques. Foundations and
Trends® in Databases 3, 4 (2011), 203–402.

[23] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith.
2007. Efficient gather and scatter operations on graphics processors. In
SC ’07: Proc. of the 2007 ACM/IEEE Conference on Supercomputing.
1–12.

[24] John L. Hennessy and David A. Patterson. 2019. A New Golden Age
for Computer Architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60.

[25] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. 2015.
Efficient execution of memory access phases using dataflow specializa-
tion.. In Proc. of the 42nd ISCA. 118–130.

[26] Ibrahim Kamel and Christos Faloutsos. 1992. Parallel R-trees. ACM
SIGMOD Record 21, 2 (1992), 195–204.

[27] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Gian-
noula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha
Shahroodi, Juan Gomez Luna, and Onur Mutlu. 2019. SMASH: Co-
designing Software Compression and Hardware-Accelerated Indexing
for Efficient Sparse Matrix Operations. In Proc. of the 52nd MICRO.

[28] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany,
Jung Ho Ahn, Peter Mattson, and John D. Owens. 2003. Programmable
Stream Processors. Computer 36, 8 (aug 2003), 54–62.

[29] M Karlsson, F Dahlgren, and P Stenstrom. 2000. A Prefetching Tech-
nique for Irregular Accesses to Linked Data Structures. In Proc. of the
6th HPCA.

[30] Michael S Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Ac-
cess path selection in main-memory optimized data systems: Should
I scan or should I probe?. In Proc. of the 2017 ACM International
Conference on Management of Data. 715–730.

[31] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin T Lim,
and Parthasarathy Ranganathan. 2013. Meet the walkers: accelerating
index traversals for in-memory databases.. In Proc. of the 46th MICRO.
468–479.

[32] Rakesh Komuravelli, Matthew D Sinclair, Johnathan Alsop, Muham-
mad Huzaifa, Maria Kotsifakou, Prakalp Srivastava, Sarita V Adve, and
Vikram S Adve. 2015. Stash: have your scratchpad and cache it too.. In
Proc. of the 42nd ISCA. 707–719.

[33] Snehasish Kumar, Naveen Vedula, Arrvindh Shriraman, and Vijayalak-
shmi Srinivasan. 2015. DASX: Hardware accelerator for software data
structures. Proc. of the International Conference on Supercomputing
2015-June (2015), 361–371.

[34] Jochen Liedtke and Kevin Elphinstone. 1996. Guarded Page Tables
on Mips R4600 or an Exercise in Architecture-Dependent Micro Opti-
mization. SIGOPS Oper. Syst. Rev. 30, 1 (jan 1996).

[35] Weifeng Liu and Brian Vinter. 2015. CSR5: An efficient storage format
for cross-platform sparse matrix-vector multiplication. In Proc. of the
29th ACM on International Conference on Supercomputing. 339–350.

[36] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat,
Sriram Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-
Mode Representation of Sparse Tensors. In Proc. of the International
Conference for High Performance Computing, Networking, Storage
and Analysis.

[37] Tayo Oguntebi and Kunle Olukotun. 2016. Graphops: A dataflow
library for graph analytics acceleration. In Proc. of the FPGA.

[38] Oracle. [n. d.]. Scans. https://databaseinternalmechanism.com/
oracle-database-internals/index-lookup-unique-scanrange-
scan-full-scan-fast-full-scan-skip-scan/.

https://dev.to/mdnurahmed/simple-scalable-search-autocomplete-systems-1j18
https://dev.to/mdnurahmed/simple-scalable-search-autocomplete-systems-1j18
https://databaseinternalmechanism.com/oracle-database-internals/index-lookup-unique-scanrange-scan-full-scan-fast-full-scan-skip-scan/
https://databaseinternalmechanism.com/oracle-database-internals/index-lookup-unique-scanrange-scan-full-scan-fast-full-scan-skip-scan/
https://databaseinternalmechanism.com/oracle-database-internals/index-lookup-unique-scanrange-scan-full-scan-fast-full-scan-skip-scan/

METAL: Caching Multi-level Indexes in
Domain-Specific Architectures ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[39] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021.
Terrace: A hierarchical graph container for skewed dynamic graphs.
In Proc. of the 2021 International Conference on Management of Data.
1372–1385.

[40] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Clayton
Crago, Kartik Hegde, Rangharajan Venkatesan, Stephen W Keckler,
Christopher W Fletcher, and Joel S Emer. 2019. Buffets: An Efficient
and Composable Storage Idiom for Explicit Decoupled Data Orchestra-
tion.. In Proc. of the 24th ASPLOS. 137–151.

[41] Stefania Perri and Pasquale Corsonello. 2008. Fast Low-Cost Implemen-
tation of Single-Clock-Cycle Binary Comparator. IEEE Transactions
on Circuits and Systems II: Express Briefs 55, 12 (2008), 1239–1243.

[42] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matthew Feldman,
Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and
Kunle Olukotun. 2017. Plasticine: A Reconfigurable Architecture For
Parallel Paterns.. In Proc. of the 44th ISCA. 389–402.

[43] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudar-
shan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020.
SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible
Interconnects for DNN Training. In IEEE International Symposium on
High Performance Computer Architecture (HPCA).

[44] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M Hellerstein, and
Scott Shenker. 2004. Prefix hash tree: An indexing data structure
over distributed hash tables. In Proc. of the 23rd ACM symposium on
principles of distributed computing, Vol. 37. St. John’s Newfoundland,
Canada.

[45] Redis. 2024. https://github.com/redis/redis/blob/unstable/src/t_
zset.c.

[46] Redis. 2024. https://redis.com/glossary/redis-sorted-sets/.
[47] Samuel Rogers, Joshua Slycord, Mohammadreza Baharani, and Hamed

Tabkhi. 2020. Gem5-SALAM: A System Architecture for LLVM-
Based Accelerator Modeling.. In Proc. of the 53rd MICRO. 471–482.

[48] Amir Roth, Andreas Moshovos, and Gurindar S Sohi. 1998. Depen-
dence Based Prefetching for Linked Data Structures. In Proc. of the 8th
ASPLOS.

[49] Alexander Rucker, Matthew Vilim, Tian Zhao 0001, Yaqi Zhang 0001,
Raghu Prabhakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA
for Sparsity.. In Proc. of the 54th MICRO. 1022–1035.

[50] Ali Sedaghati, Milad Hakimi, Reza Hojabr, and Arrvindh Shriraman.
2022. X-cache: a modular architecture for domain-specific caches.
In Proc. of the 49th Annual International Symposium on Computer
Architecture. 396–409.

[51] Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. 2015.
Gather-Scatter DRAM: In-DRAM Address Translation to Improve
the Spatial Locality of Non-Unit Strided Accesses. In Proc. of the
48th International Symposium on Microarchitecture (Waikiki, Hawaii)
(MICRO-48). Association for Computing Machinery, New York, NY,
USA, 267–280.

[52] Smrchy. [n. d.]. https://github.com/smrchy/redis-tagging.
[53] Po-An Tsai, Nathan Beckmann, and Daniel Sanchez. 2017. Jenga:

Software-Defined Cache Hierarchies. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA).
652–665.

[54] Po An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking
the memory hierarchy for modern languages. Proc. of the Annual
International Symposium on Microarchitecture, MICRO 2018-Octob
(2018), 203–216.

[55] Piyush Tyagi and Rishikesh Pandey. 2020. High-Speed and Area-
Efficient Scalable N-bit Digital Comparator. IET Circuits, Devices &
Systems 14, 4 (2020), 450–458.

[56] Matthew Vilim, Alexander Rucker, Yaqi Zhang 0001, Sophia Liu, and
Kunle Olukotun. 2020. Gorgon: Accelerating Machine Learning from
Relational Data.. In Proc. of the 47th ISCA.

[57] Matthew Vilim, Alexander Rucker, and Kunle Olukotun. 2021. Au-
rochs: An Architecture for Dataflow Threads.. In Proc. of the 48th
ISCA.

[58] Jian Weng, Jian, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas
Shah, and Tony Nowatzki. 2020. DSAGEN: Synthesizing Pro-
grammable Spatial Accelerators.. In Proc. of the 47th ISCA. 268–281.

[59] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’t Cache (the Page Table).
SIGMETRICS Perform. Eval. Rev. 44, 1 (jun 2016), 337–350.

[60] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sánchez.
2021. Gamma: leveraging Gustavson’s algorithm to accelerate sparse
matrix multiplication. In Proc. of the 26th ASPLOS.

[61] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020.
SpArch: Efficient architecture for sparse matrix multiplication. In In
Proc. of 26th HPCA.

[62] ZhangYunHao. 2024. https://github.com/zhangyunhao116/skipset.

https://github.com/redis/redis/blob/unstable/src/t_zset.c
https://github.com/redis/redis/blob/unstable/src/t_zset.c
https://redis.com/glossary/redis-sorted-sets/
https://github.com/smrchy/redis-tagging
https://github.com/zhangyunhao116/skipset

	Abstract
	1 Introduction
	2 Motivation and Scope
	2.1 Indexed Data-Structures in Target DSAs
	2.2 Common Traits of Widely-used Index Types
	2.3 METAL vs. other caches

	3 METAL Architecture
	3.1 Index Cache (IX-cache)
	3.2 Walk Pipeline

	4 Reuse Patterns and Descriptors
	4.1 Reuse Pattern: Node. Target: SpMM rucker-micro-2021
	4.2 Reuse Pattern: Level. Target: Database Scan vilim-isca-2020
	4.3 Reuse Pattern: Level, Branch. Target: Spatial Analysis kamel1992parallel
	4.4 Reuse Pattern: Node. Target: Sorted Sets Introductiontoredis,sortedsetsredis

	5 Evaluation
	5.1 Trends: METAL vs. Address vs. X-Cache
	5.2 Performance Evaluation
	5.3 DRAM Energy
	5.4 METAL Speedup Breakdown
	5.5 METAL vs. Index Size
	5.6 Design Sweep
	5.7 Energy

	6 Supplemental Related Work
	7 Conclusion
	References

